The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids

被引:54
作者
Keklikcioglu Cakmak, Nese [1 ]
机构
[1] Sivas Cumhuriyet Univ, Dept Chem Engn, Fac Engn, TR-58140 Sivas, Turkey
关键词
Thermal conductivity; Graphene oxide; Surfactants; Nanofluid; Thermal properties; Stability; CARBON NANOTUBES; ENHANCEMENT; SUSPENSIONS; ADSORPTION; DISPERSION; VISCOSITY; SODIUM;
D O I
10.1007/s10973-019-09096-6
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effects of three different surfactants were analyzed on the stability and thermal conductivity of GO/de-ionized water nanofluids. One surfactant was cationic, cetyltrimethyl ammonium bromide (CTAB), one was anionic, sodium dodecyl sulfate (SDS), and one was nonionic, TritonX-100 (TX-100). These were added to synthesized graphene oxide (GO) prepared in de-ionized water at different concentrations (0.01, 0.05, 0.1, 0.15, 0.2, and 0.25 mass%). The transient hot-wire technique was employed to measure the thermal conductivity of all nanofluids at 20-40 degrees C. The stability of the GO/de-ionized water nanofluids without a surfactant was better than that of nanofluids with a surfactant. The stability and dispersion of the nanofluid with SDS were considerably better than nanofluids with the other two surfactants. All nanofluids without a surfactant had higher thermal conductivity than de-ionized water at all temperatures. An increase in the GO concentration from 0.01 to 0.2 mass% improved thermal conductivity by 3.05 and 22.03% at 20 degrees C, respectively. A further increase to 0.25 mass% caused a 23.73% increase in thermal conductivity.
引用
收藏
页码:1895 / 1902
页数:8
相关论文
共 54 条
[1]   A review of thermal conductivity of various nanofluids [J].
Ahmadi, Mohammad Hossein ;
Mirlohi, Amin ;
Nazari, Mohammad Alhuyi ;
Ghasempour, Roghayeh .
JOURNAL OF MOLECULAR LIQUIDS, 2018, 265 :181-188
[2]   Thermal conductivity and viscosity models of metallic oxides nanofluids [J].
Alawi, Omer A. ;
Sidik, Nor Azwadi Che ;
Xian, Hong Wei ;
Kean, Tung Hao ;
Kazi, S. N. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 116 :1314-1325
[3]  
[Anonymous], 1985, ASTM F963
[4]   Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review [J].
Asadi, Amin ;
Pourfattah, Farzad ;
Szilagyi, Imre Miklos ;
Afrand, Masoud ;
Zyla, Gawel ;
Ahn, Ho Seon ;
Wongwises, Somchai ;
Hoang Minh Nguyen ;
Arabkoohsar, Ahmad ;
Mahian, Omid .
ULTRASONICS SONOCHEMISTRY, 2019, 58
[5]   Enhanced convective heat transfer using graphene dispersed nanofluids [J].
Baby, Tessy Theres ;
Ramaprabhu, Sundara .
NANOSCALE RESEARCH LETTERS, 2011, 6
[6]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[7]   Thermal conductivity of graphene nanoplatelet/cycloaliphatic epoxy composites: Multiscale modeling [J].
Chinkanjanarot, Sorayot ;
Tomasi, Julie M. ;
King, Julia A. ;
Odegard, Gregory M. .
CARBON, 2018, 140 :653-663
[8]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[9]   Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment [J].
Chowdhury, Indranil ;
Duch, Matthew C. ;
Mansukhani, Nikhita D. ;
Hersam, Mark C. ;
Bouchard, Dermont .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (12) :6288-6296
[10]   Graphene oxide as surfactant sheets [J].
Cote, Laura J. ;
Kim, Jaemyung ;
Tung, Vincent C. ;
Luo, Jiayan ;
Kim, Franklin ;
Huang, Jiaxing .
PURE AND APPLIED CHEMISTRY, 2011, 83 (01) :95-110