Experimental validation of damaged reinforced concrete beam strengthened by pretensioned prestressed ultra-high-performance concrete layer

被引:22
|
作者
Zhang, Yang [1 ]
Huang, Songling [1 ]
Zhu, Yanping [1 ,2 ]
Hussein, Husam H. [3 ]
Shao, Xudong [1 ]
机构
[1] Hunan Univ, Coll Civil Engn, Key Lab Wind & Bridge Engn Hunan Prov, Changsha 410082, Hunan, Peoples R China
[2] Missouri S&T, Dept Civil Architectural & Environm Engn, Rolla, MO 65401 USA
[3] Ohio Univ, Dept Civil Engn, Athens, OH 45701 USA
关键词
Ultra-high-performance Concrete (UHPC); Damaged Reinforced Concrete; Strengthening; Prestressing; Flexure Behavior; Cracking Capacity; Ultimate Flexural Capacity; FLEXURAL BEHAVIOR; SLABS;
D O I
10.1016/j.engstruct.2022.114251
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Strengthening reinforced concrete (RC) beams with ultra-high-performance concrete (UHPC) can improve me-chanical properties and durability from previous studies. To further improve UHPC strengthening efficiency, a new technology using a pretensioned prestressed UHPC (P-UHPC) layer for flexural strengthening was proposed in this study. The flexural capacity and crack resistance of the damaged RC beams strengthened by the P-UHPC layer were investigated through a four-point bending test in order for the results to be used in the analysis and design of strengthening damaged structures. The flexural performance of two P-UHPC strengthened beams (PU), one reinforced UHPC (R-UHPC) layer strengthened beam (RU), and one unstrengthened RC control beam (CB) was tested. This study also determined the influence of UHPC shrinkage and prestressing force on the cracking load and ultimate flexural capacity of the P-UHPC strengthened beams by proposing a formal theory. Results showed that the failure modes of the PU beams were typically bending failure. The PU beams showed good composite performance, and there was no debonding failure at the UHPC-RC interface during the test. Moreover, the flexural performance of the damaged RC beams strengthened with the P-UHPC layer was significantly improved, with the average cracking load of the PU beams higher than that of the CB and RU beams by 87.4% and 28.1%, respectively. The average ultimate flexural capacity was 85.2% and 31.7% higher than the CB and RU beams, respectively. In addition, the P-UHPC layer had a more substantial inhibitory effect on the crack development of the damaged RC beams, and the re-expansion load of the cracks in the damaged RC of the PU beams was 111.5 % higher than the RU beam. Finally, the calculation model and theoretical formula for pre-dicting the cracking load and ultimate flexural capacity of the P-UHPC strengthened beams were proposed, and the test results verified the applicability of the proposed calculation methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Structural performance of ultra-high-performance fiber-reinforced concrete beams
    Kahanji, Charles
    Ali, Faris
    Nadjai, Ali
    STRUCTURAL CONCRETE, 2017, 18 (02) : 249 - 258
  • [32] Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses
    Kim, Seonhyeok
    Kil, Taegeon
    Shin, Sangmin
    Jang, Daeik
    Yoon, H. N.
    Bae, Jin-Ho
    Seo, Joonho
    Yang, Beomjoo
    COMPUTERS AND CONCRETE, 2023, 32 (05): : 487 - 498
  • [33] Structural strengthening of reinforced concrete beams using ultra-high-performance concrete with various fiber volume fractions and layer thicknesses
    Yoo, Doo-Yeol
    Oh, Taekgeun
    Choi, Jinsoo
    Min, Kyung-Hwan
    Shin, Hyun-Oh
    STRUCTURES, 2024, 70
  • [34] Direct Biaxial Behavior of Ultra-High-Performance Concrete
    D'Alessandro, Kacie C.
    Roberts-Wollmann, Carin L.
    Cousins, Thomas E.
    ACI MATERIALS JOURNAL, 2020, 117 (02) : 259 - 270
  • [35] Flexural behaviors of fiber-reinforced polymer fabric reinforced ultra-high-performance concrete panels
    Meng, Weina
    Khayat, Kamal Henri
    Bao, Yi
    CEMENT & CONCRETE COMPOSITES, 2018, 93 : 43 - 53
  • [36] Developing Sustainable Ultra-High-Performance Concrete
    Kareem, Rahman
    Alsalman, Ali
    Dang, Canh N.
    Marti-Vargas, Jose R.
    Hale, W. Micah
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 127 - 136
  • [37] Thermomechanical Hysteresis of Reinforced Concrete Beams Retrofitted with Carbon Fiber-Reinforced Polymer and Ultra-High-Performance Concrete
    Kim, Yail J.
    Bumadian, Ibrahim
    ACI STRUCTURAL JOURNAL, 2024, 121 (05) : 189 - 202
  • [38] Interface Shear of Ultra-High-Performance Concrete
    Muzenski, Scott
    Haber, Zachary B.
    Graybeal, Benjamin
    ACI STRUCTURAL JOURNAL, 2022, 119 (01) : 267 - +
  • [39] Bond of Reinforcement in Ultra-High-Performance Concrete
    Yuan, Jiqiu
    Graybeal, Benjamin
    ACI STRUCTURAL JOURNAL, 2015, 112 (06) : 851 - 860
  • [40] Stepped Reinforced Concrete Beams Retrofitted with Carbon Fiber-Reinforced Polymer Sheets and Ultra-High-Performance Concrete
    Kim, Yail J.
    Hassani, Aliasghar
    ACI STRUCTURAL JOURNAL, 2023, 120 (02) : 91 - 104