Optimal parameter selections for a general Halpern iteration

被引:4
|
作者
He, Songnian [1 ]
Wu, Tao [1 ]
Cho, Yeol Je [2 ,3 ]
Rassias, Themistocles M. [4 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[2] Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[4] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Fixed point; Nonexpansive mapping; Strong convergence; Halpern iteration; Optimal parameter selection; STRONG-CONVERGENCE THEOREMS; APPROXIMATING FIXED-POINTS; NONEXPANSIVE-MAPPINGS; PROJECTION METHOD; WEAK-CONVERGENCE; OPERATORS; ISHIKAWA;
D O I
10.1007/s11075-018-00650-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a closed affine subset of a real Hilbert space H and T : C -> C be a nonexpansive mapping. In this paper, for any fixed u is an element of C, a general Halpern iteration process: {x(0) is an element of C, x(n+1) = t(n)u + (1 - t(n))Tx(n), n >= 0, is considered for finding a fixed point of T nearest to u, where the parameter sequence {t(n)} is selected in the real number field, R. The core problem to be addressed in this paper is to find the optimal parameter sequence so that this iteration process has the optimal convergence rate and to give some numerical results showing advantages of our algorithms. Also, we study the problem of selecting the optimal parameters for a general viscosity approximation method and apply the results obtained from this study to solve a class of variational inequalities.
引用
收藏
页码:1171 / 1188
页数:18
相关论文
共 50 条
  • [41] STRONG CONVERGENCE OF HALPERN ITERATION FOR NONSMOOTH VARIATIONAL INEQUALITY IN HILBERT SPACE
    Zhao, Xiaopeng
    Naraghirad, Eskandar
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (05) : 993 - 999
  • [42] A modified halpern-type iteration algorithm for totally quasi-φ-asymptotically nonexpansive mappings with applications
    Chang, S. S.
    Lee, H. W. Joseph
    Chan, Chi Kin
    Zhang, W. B.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6489 - 6497
  • [43] Halpern's iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces
    Suantai, Suthep
    Cho, Yeol Je
    Cholamjiak, Prasit
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) : 489 - 499
  • [44] Halpern's iteration for Bregman strongly nonexpansive multi-valued mappings in reflexive Banach spaces with application
    Li, Yi
    Liu, Hongbo
    Zheng, Kelong
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 12
  • [45] A GENERAL COMPOSITE ITERATION METHOD FOR MONOTONE MAPPINGS AND A COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGS
    Jung, Jong Soo
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (03) : 501 - 518
  • [46] On Browder's convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graphs
    Tiammee, Jukrapong
    Kaewkhao, Attapol
    Suantai, Suthep
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [47] A HALPERN TYPE ITERATION WITH MULTIPLE ANCHOR POINTS IN COMPLETE GEODESIC SPACES WITH NEGATIVE CURVATURE
    Kimura, Yasunori
    Sasaki, Kazuya
    FIXED POINT THEORY, 2020, 21 (02): : 631 - 646
  • [48] RELAXED HALPERN TYPE ITERATION SCHEMES FOR SEQUENCES OF NONEXPANSIVE MAPPINGS IN CAT(0) SPACES
    Deng, Wei-Qi
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 43 (01) : 241 - 249
  • [49] Strong convergence of a modified Halpern-iteration for asymptotically quasi-φ-nonexpansive mappings
    Wu, Chang-Qun
    Hao, Yan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (01): : 261 - 276
  • [50] Equivalent theorems of the convergence between Ishikawa-Halpern iteration and viscosity approximation method
    Wang, Shuang
    Hu, Changsong
    Chai, Guoqing
    Hu, Hongchang
    APPLIED MATHEMATICS LETTERS, 2010, 23 (06) : 693 - 699