Ultra-Short-Term Solar PV Power Forecasting Method Based on Frequency-Domain Decomposition and Deep Learning

被引:7
|
作者
Hu, Lin [1 ]
Zhen, Zhao [1 ]
Wang, Fei [1 ]
Qiu, Gang [2 ]
Li, Yu [2 ]
Shafie-khah, Miadreza [3 ]
Catalno, Joao P. S. [4 ,5 ]
机构
[1] North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China
[2] State Grid Xinjiang Elect Power Co Ltd, Dispatch & Control Ctr, Urumqi 830018, Peoples R China
[3] Univ Vaasa, Sch Technol & Innovat, Vaasa 65200, Finland
[4] Univ Porto, Fac Engn, P-4200465 Porto, Portugal
[5] INESC TEC, P-4200465 Porto, Portugal
来源
2020 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING | 2020年
基金
国家重点研发计划;
关键词
PV power forecasting; ultra-short term; spectrum analysis; deep learning; frequency-domain decomposition; HYBRID METHOD; ENERGY; MODEL; OPTIMIZATION; EXTRACTION; PREDICTION; SCHEME;
D O I
10.1109/IAS44978.2020.9334889
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ultra-short-term photovoltaic (PV) power forecasting can support the real-time dispatching of power grid and the optimal operation of PV power station itself. However, due to various meteorological factors, the photovoltaic power has great fluctuations. To improve the refined ultra-short-term forecasting technology of PV power, this paper proposes an ultra-short-term forecasting model of PV power based on optimal frequency-domain decomposition and deep learning. First, the amplitude and phase of each frequency sine wave is obtained by fast Fourier decomposition. As the frequency demarcation point is different, the correlation between the decomposition component and the original data is analyzed. By minimizing the square of the difference that the correlation between low-frequency components and raw data is subtracted from the correlation between high-frequency components and raw data, the optimal frequency demarcation points for decomposition components are obtained. Then convolutional neural network is used to predict low-frequency component and high-frequency component, and final forecasting result is obtained by addition reconstruction. Finally, the paper compares forecasting results of the proposed model and the non-spectrum analysis model in the case of predicting the 1 hour, 2 hours, 3 hours, and 4 hours. The results fully show that the proposed model improves forecasting accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning
    Tan, Mao
    Yuan, Siping
    Li, Shuaihu
    Su, Yongxin
    Li, Hui
    He, Feng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (04) : 2937 - 2948
  • [32] Ultra-short-term wind power prediction based on double decomposition and LSSVM
    Qin, Bin
    Huang, Xun
    Wang, Xin
    Guo, Lingzhong
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (14) : 2627 - 2636
  • [33] A Power Forecasting Method for Ultra-Short-Term Photovoltaic Power Generation Using Transformer Model
    Tian, Fengyuan
    Fan, Xuexin
    Wang, Ruitian
    Qin, Haochen
    Fan, Yaxiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [34] DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting
    Zhong, Mingwei
    Xu, Cancheng
    Xian, Zikang
    He, Guanglin
    Zhai, Yanpeng
    Zhou, Yongwang
    Fan, Jingmin
    ENERGY, 2024, 286
  • [35] Ultra-short-term PV power prediction using optimal ELM and improved variational mode decomposition
    Wang, Qiang
    Lin, Hekai
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [36] Data-driven and Deep-learning-based Ultra-short-term Wind Power Prediction
    Miao C.
    Li H.
    Wang X.
    Han L.
    Ma Y.
    Li H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (14): : 22 - 29
  • [37] Ultra-short-term irradiance forecasting model based on ground-based cloud image and deep learning algorithm
    Zhen, Zhao
    Zhang, Xuemin
    Mei, Shengwei
    Chang, Xiqiang
    Chai, Hua
    Yin, Rui
    Wang, Fei
    IET RENEWABLE POWER GENERATION, 2022, 16 (12) : 2604 - 2616
  • [38] A combined model based on POA-VMD secondary decomposition and LSTM for ultra-short-term wind power forecasting
    Yang, Shaomei
    Qian, Xiangyi
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (03)
  • [39] Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting
    Son, Namrye
    SUSTAINABILITY, 2021, 13 (22)
  • [40] Review of Ultra-short-term Forecasting Methods for Photovoltaic Power Generation
    Dong C.
    Wang Z.
    Bai J.
    Jiang J.
    Wang B.
    Liu G.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (07): : 2938 - 2951