Ultra-Short-Term Solar PV Power Forecasting Method Based on Frequency-Domain Decomposition and Deep Learning

被引:7
|
作者
Hu, Lin [1 ]
Zhen, Zhao [1 ]
Wang, Fei [1 ]
Qiu, Gang [2 ]
Li, Yu [2 ]
Shafie-khah, Miadreza [3 ]
Catalno, Joao P. S. [4 ,5 ]
机构
[1] North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China
[2] State Grid Xinjiang Elect Power Co Ltd, Dispatch & Control Ctr, Urumqi 830018, Peoples R China
[3] Univ Vaasa, Sch Technol & Innovat, Vaasa 65200, Finland
[4] Univ Porto, Fac Engn, P-4200465 Porto, Portugal
[5] INESC TEC, P-4200465 Porto, Portugal
来源
2020 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING | 2020年
基金
国家重点研发计划;
关键词
PV power forecasting; ultra-short term; spectrum analysis; deep learning; frequency-domain decomposition; HYBRID METHOD; ENERGY; MODEL; OPTIMIZATION; EXTRACTION; PREDICTION; SCHEME;
D O I
10.1109/IAS44978.2020.9334889
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ultra-short-term photovoltaic (PV) power forecasting can support the real-time dispatching of power grid and the optimal operation of PV power station itself. However, due to various meteorological factors, the photovoltaic power has great fluctuations. To improve the refined ultra-short-term forecasting technology of PV power, this paper proposes an ultra-short-term forecasting model of PV power based on optimal frequency-domain decomposition and deep learning. First, the amplitude and phase of each frequency sine wave is obtained by fast Fourier decomposition. As the frequency demarcation point is different, the correlation between the decomposition component and the original data is analyzed. By minimizing the square of the difference that the correlation between low-frequency components and raw data is subtracted from the correlation between high-frequency components and raw data, the optimal frequency demarcation points for decomposition components are obtained. Then convolutional neural network is used to predict low-frequency component and high-frequency component, and final forecasting result is obtained by addition reconstruction. Finally, the paper compares forecasting results of the proposed model and the non-spectrum analysis model in the case of predicting the 1 hour, 2 hours, 3 hours, and 4 hours. The results fully show that the proposed model improves forecasting accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A multivariate ultra-short-term wind speed forecasting model by employing multistage signal decomposition approaches and a deep learning network
    Sibtain, Muhammad
    Bashir, Hassan
    Nawaz, Mohsin
    Hameed, Salma
    Azam, Muhammad Imran
    Li, Xianshan
    Abbas, Tanveer
    Saleem, Snoober
    ENERGY CONVERSION AND MANAGEMENT, 2022, 263
  • [22] Ultra-Short-Term Forecasting of Large Distributed Solar PV Fleets Using Sparse Smart Inverter Data
    Yue, Han
    Ali, Musaab Mohammed
    Lin, Yuzhang
    Liu, Hongfu
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (03) : 1968 - 1980
  • [23] Ultra-Short-Term Wind Power Forecasting Based on Fluctuation Pattern Clustering and Prediction
    Fan, Huijing
    Zhen, Zhao
    Liu, Jiaming
    Wang, Fei
    Mi, Zengqiang
    2020 IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (SCEMS 2020), 2020, : 918 - 923
  • [24] Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method
    Fan, Huijing
    Zhen, Zhao
    Liu, Nian
    Sun, Yiqian
    Chang, Xiqiang
    Li, Yu
    Wang, Fei
    Mi, Zengqiang
    ENERGY, 2023, 266
  • [25] A comprehensive framework of the decomposition-based hybrid method for ultra-short-term wind power forecasting with on-site application
    Yang, Shixi
    Zhou, Jiaxuan
    Gu, Xiwen
    Mei, Yiming
    Duan, Jiangman
    ENERGY, 2024, 313
  • [26] A novel ultra-short-term wind power forecasting method based on TCN and Informer models
    Li, Qi
    Ren, Xiaoying
    Zhang, Fei
    Gao, Lu
    Hao, Bin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [27] Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method
    Wang, Fei
    Chen, Peng
    Zhen, Zhao
    Yin, Rui
    Cao, Chunmei
    Zhang, Yagang
    Duic, Neven
    APPLIED ENERGY, 2022, 323
  • [28] Modes decomposition forecasting approach for ultra-short-term wind speed
    Tian, Zhongda
    APPLIED SOFT COMPUTING, 2021, 105
  • [29] Ultra-short-term Offshore Wind Power Forecasting Based on Secondary Decomposition and Multi-objective Optimization
    Dong X.
    Zhao H.
    Zhao S.
    Lu D.
    Chen X.
    Liu L.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (08): : 3260 - 3270
  • [30] Hedge Backpropagation Based Online LSTM Architecture for Ultra-Short-Term Wind Power Forecasting
    Pan, Chunyang
    Wen, Shuli
    Zhu, Miao
    Ye, Huili
    Ma, Jianjun
    Jiang, Sheng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4179 - 4192