Two-dimensional MEMS scanner for dual-axes confocal microscopy

被引:102
作者
Ra, Hyejun [1 ]
Piyawattanametha, Wibool
Taguchi, Yoshihiro
Lee, Daesung
Mandella, Michael J.
Solgaard, Olav
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Natl Elect & Comp Technol Ctr, Pathum Thani 12120, Thailand
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[7] Keio Univ, Dept Syst Design Engn, Yokohama, Kanagawa 223, Japan
[8] LG Electron Inst Technol, Seoul 137724, South Korea
基金
美国国家卫生研究院;
关键词
dual-axes confocal microscopy; electrostatic actuation; micromirror; self-alignment; vertical comb actuators; 2-D microelectromechanical systems (MEMS) scanner;
D O I
10.1109/JMEMS.2007.892900
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel 2-D microelectromechanical systems (MMS) scanner that enables dual-axes confocal microscopy. Dual-axes confocal microscopy provides high resolution and long working distance, while also being well suited for miniaturization and integration into endoscopes for in vivo imaging. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer (a silicon wafer. bonded on a SOI wafer) and is actuated by self-aligned vertical electrostatic combdrives. Maximum optical deflections of +/- 4.8 degrees and +/- 5.5 degrees are achieved in static mode for the outer and inner axes, respectively. Torsional resonant frequencies are at 500 Hz and 2.9 kHz for the outer and inner axes, respectively. The imaging capability of the HEMS scanner is successfully demonstrated in a breadboard setup. Reflectance images with a field of view of 344 mu m x 417 mu mare achieved at 8 frames/s. The transverse resolutions are 3.94 and 6.68 mu m for the horizontal and vertical dimensions, respectively.
引用
收藏
页码:969 / 976
页数:8
相关论文
共 22 条
[1]   Nonlinear frequency response of comb-driven microscanners [J].
Ataman, C ;
Urey, H .
MOEMS DISPLAY AND IMAGING SYSTEMS II, 2004, 5348 :166-174
[2]   Silicon-micromachined scanning confocal optical microscope [J].
Dickensheets, DL ;
Kino, GS .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :38-47
[3]  
GINIUNAS L, 1991, ELECTRON LETT, V27, P724, DOI 10.1049/el:19910450
[4]  
HARRIS MR, 1992, Patent No. 5120953
[5]   Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope [J].
Hofmann, U ;
Muehlmann, S ;
Witt, M ;
Dörschel, K ;
Schütz, R ;
Wagner, B .
MINIATURIZED SYSTEMS WITH MICRO-OPTICS AND MEMS, 1999, 3878 :29-38
[6]   Self-aligned vertical electrostatic combdrives for micromirror actuation [J].
Krishnamoorthy, U ;
Lee, D ;
Solgaard, O .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (04) :458-464
[7]   Micromachined transmissive scanning confocal microscope [J].
Kwon, S ;
Lee, LP .
OPTICS LETTERS, 2004, 29 (07) :706-708
[8]  
LEE D, 2004, P SOL STAT SENS ACT, P352
[9]   Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope [J].
Liang, C ;
Sung, KB ;
Richards-Kortum, RR ;
Descour, MR .
APPLIED OPTICS, 2002, 41 (22) :4603-4610
[10]  
Murakami K, 2003, BOSTON TRANSDUCERS'03: DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, P587