Tailoring manganese oxide with atomic precision to increase surface site availability for oxygen reduction catalysis

被引:48
作者
Eom, C. John [1 ]
Kuo, Ding-Yuan [1 ]
Adamo, Carolina [2 ]
Moon, Eun Ju [3 ]
May, Steve J. [3 ]
Crumlin, Ethan J. [4 ]
Schlom, Darrell G. [1 ,5 ]
Suntivich, Jin [1 ,5 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; MONOLAYER ELECTROCATALYSTS; THIN-FILMS; METAL; PHOTOEMISSION; TRANSITION; DESIGN; ALLOYS; NANOPARTICLES; PLATINUM;
D O I
10.1038/s41467-018-06503-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Controlling the structure of catalysts at the atomic level provides an opportunity to establish detailed understanding of the catalytic form-to-function and realize new, non-equilibrium catalytic structures. Here, advanced thin-film deposition is used to control the atomic structure of La2/3Sr13MnO3, a well-known catalyst for the oxygen reduction reaction. The surface and sub-surface is customized, whereas the overall composition and d-electron configuration of the oxide is kept constant. Although the addition of SrMnO3 benefits the oxygen reduction reaction via electronic structure and conductivity improvements, SrMnO3 can react with ambient air to reduce the surface site availability. Placing SrMnO3 in the subsurface underneath a LaMnO3 overlayer allows the catalyst to maintain the surface site availability while benefiting from improved electronic effects. The results show the promise of advanced thin-film deposition for realizing atomically precise catalysts, in which the surface and sub-surface structure and stoichiometry are tailored for functionality, over controlling only bulk compositions.
引用
收藏
页数:7
相关论文
共 46 条
[41]   Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects [J].
Wang, Jia X. ;
Inada, Hiromi ;
Wu, Lijun ;
Zhu, Yimei ;
Choi, YongMan ;
Liu, Ping ;
Zhou, Wei-Ping ;
Adzic, Radoslav R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (47) :17298-17302
[42]   Note: Fixture for characterizing electrochemical devices in-operando in traditional vacuum systems [J].
Whaley, Josh A. ;
McDaniel, Anthony H. ;
El Gabaly, Farid ;
Farrow, Roger L. ;
Grass, Michael E. ;
Hussain, Zahid ;
Liu, Zhi ;
Linne, Mark A. ;
Bluhm, Hendrik ;
McCarty, Kevin F. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (08)
[43]   Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition [J].
Wu, Gang ;
Santandreu, Ana ;
Kellogg, William ;
Gupta, Shiva ;
Ogoke, Ogechi ;
Zhang, Hanguang ;
Wang, Hsing-Lin ;
Dai, Liming .
NANO ENERGY, 2016, 29 :83-110
[44]   Oxygen Reduction Activity of Carbon-Supported La1-xCaxMn1-yFeyO3 Nanoparticles [J].
Yuasa, Masayoshi ;
Tachibana, Naoki ;
Shimanoe, Kengo .
CHEMISTRY OF MATERIALS, 2013, 25 (15) :3072-3079
[45]   Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics [J].
Zhang, JL ;
Vukmirovic, MB ;
Sasaki, K ;
Nilekar, AU ;
Mavrikakis, M ;
Adzic, RR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (36) :12480-12481
[46]  
Zhi W. S., 2017, SCIENCE, V355, P4998