Computable Ordered Abelian Groups and Fields

被引:0
|
作者
Melnikov, Alexander G. [1 ]
机构
[1] Univ Auckland, Auckland 1, New Zealand
来源
PROGRAMS, PROOFS, PROCESSES | 2010年 / 6158卷
关键词
computable algebra; effective categoricity; LINEAR-ORDERINGS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present transformations of linearly ordered sets into ordered abelian groups and ordered fields. We study effective properties of the transformations. In particular, we show that a linear order L has a Delta(0)(2) copy if and only if the corresponding ordered group (ordered field) has a computable copy. We apply these codings to study the effective categoricity of linear ordered groups and fields.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 7 条
  • [1] A COMPUTABLE FUNCTOR FROM GRAPHS TO FIELDS
    Miller, Russell
    Poonen, Bjorn
    Schoutens, Hans
    Shlapentokh, Alexandra
    JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (01) : 326 - 348
  • [2] LEFT-ORDERABLE COMPUTABLE GROUPS
    Harrison-Trainor, Matthew
    JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (01) : 237 - 255
  • [3] On Computable Field Embeddings and Difference Closed Fields
    Harrison-Trainor, Matthew
    Melnikov, Alexander
    Miller, Russell
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (06): : 1338 - 1363
  • [4] Effectively categorical abelian groups
    Downey, Rodney
    Melnikov, Alexander G.
    JOURNAL OF ALGEBRA, 2013, 373 : 223 - 248
  • [5] Effective categoricity of Abelian p-groups
    Calvert, Wesley
    Cenzer, Douglas
    Harizanov, Valentina S.
    Morozov, Andrei
    ANNALS OF PURE AND APPLIED LOGIC, 2009, 159 (1-2) : 187 - 197
  • [6] Torsion-free abelian groups with optimal Scott families
    Melnikov, Alexander G.
    JOURNAL OF MATHEMATICAL LOGIC, 2018, 18 (01)
  • [7] 0"-Categorical Completely Decomposable Torsion-Free Abelian Groups
    Melnikov, Alexander G.
    MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE, 2009, 5635 : 362 - 371