Laser-seeding Attack in Quantum Key Distribution

被引:76
作者
Huang, Anqi [1 ,2 ,3 ]
Navarrete, Alvaro [4 ]
Sun, Shi-Hai [5 ]
Chaiwongkhot, Poompong [3 ,6 ]
Curty, Marcos [4 ]
Makarov, Vadim [6 ,7 ,8 ,9 ,10 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Inst Quantum Informat, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Vigo, EI Telecomunicac, Dept Signal Theory & Commun, E-36310 Vigo, Spain
[5] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai 519082, Peoples R China
[6] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[7] Russian Quantum Ctr, Moscow 121205, Russia
[8] Univ Sci & Technol China, Natl Lab Phys Sci Microscale, Shanghai Branch, Shanghai 201315, Peoples R China
[9] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat, Shanghai 201315, Peoples R China
[10] Natl Univ Sci & Technol MISiS, NTI Ctr Quantum Commun, Moscow 119049, Russia
基金
欧盟地平线“2020”; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
SECURITY; SEPARABILITY; CRYPTOGRAPHY; SYSTEMS; STATES;
D O I
10.1103/PhysRevApplied.12.064043
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum key distribution (QKD) based on the laws of quantum physics allows the secure distribution of secret keys over an insecure channel. Unfortunately, imperfect implementations of QKD compromise its information-theoretical security. Measurement-device-independent quantum key distribution (MDI QKD) is a promising approach to remove all side channels from the measurement unit, which is regarded as the "Achilles' heel" of QKD. An essential assumption in MDI QKD is, however, that the sources are trusted. Here we experimentally demonstrate that a practical source based on a semiconductor laser diode is vulnerable to a laser-seeding attack, in which light injected from the communication line into the laser results in an increase of the intensities of the prepared states. The unnoticed increase of intensity may compromise the security of QKD, as we show theoretically for the prepare-and-measure decoy-state BB84 and MDI QKD protocols. Our theoretical security analysis is general and can be applied to any vulnerability that increases the intensity of the emitted pulses. Moreover, a laser-seeding attack might be launched as well against decoy-state-based quantum cryptographic protocols beyond QKD.
引用
收藏
页数:14
相关论文
共 80 条
[1]   Quantum cryptographic network based on quantum memories [J].
Biham, E ;
Huttner, B ;
Mor, T .
PHYSICAL REVIEW A, 1996, 54 (04) :2651-2658
[2]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[3]   Laser Damage Helps the Eavesdropper in Quantum Cryptography [J].
Bugge, Audun Nystad ;
Sauge, Sebastien ;
Ghazali, Aina Mardhiyah M. ;
Skaar, Johannes ;
Lydersen, Lars ;
Makarov, Vadim .
PHYSICAL REVIEW LETTERS, 2014, 112 (07)
[4]   Controlling single-photon detector ID210 with bright light [J].
Chistiakov, Vladimir ;
Huang, Anqi ;
Egorov, Vladimir ;
Makarov, Vadim .
OPTICS EXPRESS, 2019, 27 (22) :32253-32262
[5]  
Comandar LC, 2016, NAT PHOTONICS, V10, P312, DOI [10.1038/nphoton.2016.50, 10.1038/NPHOTON.2016.50]
[6]   Finite-key analysis for measurement-device-independent quantum key distribution [J].
Curty, Marcos ;
Xu, Feihu ;
Cui, Wei ;
Lim, Charles Ci Wen ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2014, 5
[7]   Upper bounds for the secure key rate of the decoy-state quantum key distribution [J].
Curty, Marcos ;
Moroder, Tobias ;
Ma, Xiongfeng ;
Lo, Hoi-Kwong ;
Luetkenhaus, Norbert .
PHYSICAL REVIEW A, 2009, 79 (03)
[8]   Quantum key distribution with hacking countermeasures and long term field trial [J].
Dixon, A. R. ;
Dynes, J. F. ;
Lucamarini, M. ;
Froehlich, B. ;
Sharpe, A. W. ;
Plews, A. ;
Tam, W. ;
Yuan, Z. L. ;
Tanizawa, Y. ;
Sato, H. ;
Kawamura, S. ;
Fujiwara, M. ;
Sasaki, M. ;
Shields, A. J. .
SCIENTIFIC REPORTS, 2017, 7
[9]   Testing the photon-number statistics of a quantum key distribution light source [J].
Dynes, J. F. ;
Lucamarini, M. ;
Patel, K. A. ;
Sharpe, A. W. ;
Ward, M. B. ;
Yuan, Z. L. ;
Shields, A. J. .
OPTICS EXPRESS, 2018, 26 (18) :22733-22749
[10]   Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J].
Ferreira da Silva, T. ;
Vitoreti, D. ;
Xavier, G. B. ;
do Amaral, G. C. ;
Temporao, G. P. ;
von der Weid, J. P. .
PHYSICAL REVIEW A, 2013, 88 (05)