Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for singularly perturbed reaction-diffusion problems

被引:8
|
作者
Zhu, Guoqing [1 ]
Chen, Shaochun [2 ]
机构
[1] Beijing Inst Technol, Sch Sci, Beijing 100081, Peoples R China
[2] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular perturbation; Graded meshes; Finite elements; Error estimates; GRADED MESHES; EQUATION; GRIDS;
D O I
10.1016/j.cam.2010.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical approximation by a lower order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving singular perturbation problems. The quasi-optimal order error estimates are proved in the epsilon-weighted H(1)-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in epsilon-weighted H(1)-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3048 / 3063
页数:16
相关论文
共 50 条