Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for singularly perturbed reaction-diffusion problems

被引:8
|
作者
Zhu, Guoqing [1 ]
Chen, Shaochun [2 ]
机构
[1] Beijing Inst Technol, Sch Sci, Beijing 100081, Peoples R China
[2] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular perturbation; Graded meshes; Finite elements; Error estimates; GRADED MESHES; EQUATION; GRIDS;
D O I
10.1016/j.cam.2010.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical approximation by a lower order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving singular perturbation problems. The quasi-optimal order error estimates are proved in the epsilon-weighted H(1)-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in epsilon-weighted H(1)-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3048 / 3063
页数:16
相关论文
共 50 条
  • [31] A nonconforming combination of the finite element and volume methods with an anisotropic mesh refinement for a singularly perturbed convection-diffusion equation
    Wang, S
    Li, ZC
    MATHEMATICS OF COMPUTATION, 2003, 72 (244) : 1689 - 1709
  • [32] High order ε-uniform methods for singularly perturbed reaction-diffusion problems
    Gracia, JL
    Lisbona, F
    Clavero, C
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 350 - 358
  • [33] Finite element analysis of singularly perturbed problems with discontinuous diffusion
    Yadav, Ram Prasad
    Rai, Pratima
    Sharma, Kapil K.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [34] Finite element analysis of singularly perturbed problems with discontinuous diffusion
    Ram Prasad Yadav
    Pratima Rai
    Kapil K. Sharma
    Computational and Applied Mathematics, 2023, 42
  • [35] A modified graded mesh and higher order finite element method for singularly perturbed reaction-diffusion problems
    Kaushik, Aditya
    Kumar, Vijayant
    Sharma, Manju
    Sharma, Nitika
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 486 - 496
  • [36] A Finite Element Analysis in Balanced Norms for a Coupled System of Singularly Perturbed Reaction-Diffusion Equations
    Armentano, Maria Gabriela
    Lombardi, Ariel L.
    Penessi, Cecilia
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024,
  • [37] Convergence analysis of a multiscale finite element method for singularly perturbed problems
    Franca, LP
    Madureira, AL
    Tobiska, L
    Valentin, F
    MULTISCALE MODELING & SIMULATION, 2005, 4 (03): : 839 - 866
  • [38] Superconvergence of Conforming Finite Element for Fourth-Order Singularly Perturbed Problems of Reaction Diffusion Type in 1D
    Guo, Hailong
    Huang, Can
    Zhang, Zhimin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 550 - 566
  • [39] Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem
    Leykekhman, Dmitriy
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 21 - 39
  • [40] The finite volume element method on the Shishkin mesh for a singularly perturbed reaction-diffusion problem
    Wang, Yue
    Meng, Xiangyun
    Li, Yonghai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 84 : 112 - 127