Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error

被引:26
|
作者
Ruiz, Juan [1 ,2 ]
Pulido, Manuel [3 ,4 ]
机构
[1] Univ Buenos Aires, CIMA, CONICET, DCAO,FCEyN,UMI,IFAECI,CNRS, Buenos Aires, DF, Argentina
[2] RIKEN, AICS, Kobe, Hyogo, Japan
[3] Univ Nacl Nordeste, Dept Phys, IMIT, UNNE,CONICET, Corrientes, Argentina
[4] CNRS, UMI, IFAECI, Buenos Aires, DF, Argentina
关键词
KALMAN FILTER; PART II; MICROPHYSICAL PARAMETERS; CLIMATE ESTIMATION; ATMOSPHERIC STATE; RADAR DATA; COVARIANCE; REPRESENTATION;
D O I
10.1175/MWR-D-14-00017.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved.
引用
收藏
页码:1568 / 1582
页数:15
相关论文
共 50 条
  • [41] Wave height prediction at the Caspian Sea using a data-driven model and ensemble-based data assimilation methods
    Zamani, Ahmadreza
    Azimian, Ahmadreza
    Heemink, Arnold
    Solomatine, Dimitri
    JOURNAL OF HYDROINFORMATICS, 2009, 11 (02) : 154 - 164
  • [42] Ensemble-based data assimilation for atmospheric chemical transport models
    Sandu, A
    Constantinescu, EM
    Liao, WY
    Carmichael, GR
    Chai, TF
    Seinfeld, JH
    Daescu, D
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 648 - 655
  • [43] Assessment of ensemble-based chemical data assimilation in an idealized setting
    Constantinescu, Emil M.
    Sandu, Adrian
    Chai, Tianfeng
    Carmichael, Gregory R.
    ATMOSPHERIC ENVIRONMENT, 2007, 41 (01) : 18 - 36
  • [44] Assessment of an ensemble-based data assimilation system for a shallow estuary
    Khanarmuei, Mohammadreza
    Mardani, Neda
    Suara, Kabir
    Sumihar, Julius
    Sidle, Roy C.
    McCallum, Adrian
    Brown, Richard J.
    ESTUARINE COASTAL AND SHELF SCIENCE, 2021, 257
  • [45] Ensemble-based data assimilation and targeted observation of a chemical tracer in a sea breeze model
    Stuart, Amy L.
    Aksoy, Altug
    Zhang, Fuqing
    Nielsen-Gammon, John W.
    ATMOSPHERIC ENVIRONMENT, 2007, 41 (14) : 3082 - 3094
  • [46] Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
    Lawson, WG
    Hansen, JA
    MONTHLY WEATHER REVIEW, 2004, 132 (08) : 1966 - 1981
  • [47] DISTINGUISHING INFLATION DRIVERS AT SHALLOW MAGMATIC SYSTEMS USING ENSEMBLE-BASED DATA ASSIMILATION
    Albright, J. A.
    Gregg, P. M.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3622 - 3625
  • [48] A Novel Ensemble-Based Parameter Estimation for Improving Ocean Biogeochemistry in an Earth System Model
    Singh, Tarkeshwar
    Counillon, Francois
    Tjiputra, Jerry
    Wang, Yiguo
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2025, 17 (02)
  • [49] Direct radiative effect of aerosols estimated using ensemble-based data assimilation in a global aerosol climate model
    Yumimoto, K.
    Takemura, T.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [50] Linear response based parameter estimation in the presence of model error
    Zhang, He
    Harlim, John
    Li, Xiantao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 430