Parametric design of the band structure for lattice materials

被引:20
作者
Lepidi, Marco [1 ]
Bacigalupo, Andrea [2 ]
机构
[1] Univ Genoa, DICCA, Via Montallegro 1, I-16154 Genoa, Italy
[2] IMT Sch Adv Studies Lucca, Piazza S Francesco 19, I-55100 Lucca, Italy
关键词
Lattice materials; Band structure; Parametric design; Inverse problem; Perturbation methods; HOMOGENIZATION; IDENTIFICATION; ELASTICITY; SYSTEMS; MODEL;
D O I
10.1007/s11012-017-0644-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Lattice materials are often investigated to determine how small parameter variations in the periodic microstructrure can influence the elastic wave propagation. A general hierarchical scheme, based on asymptotic perturbation techniques, is outlined to analytically assess the parametric sensitivity of the material band structure to a generic multi-parametric perturbation (direct problem). Modeling refinements, parameters updates, microstructural damages and manufacturing irregularities can be treated indifferently and simultaneously. According to a converse strategy, based on the inversion of the sensitivity problem, a hierarchical scheme is sketched to identify the parameter combinations which realize a design band structure (inverse problem). The direct and inverse problem are applied to the sensitivity analysis and band structure design of the anti-tetrachiral lattice material. Despite the high spectral density and the high-dimensional parameter space, the multi-parameter perturbation technique demonstrates its suitability in, first, analytically-although asymptotically-describe the material spectrum and, second, designing the material microstructure to obtain the desired spectral components. The inverse problem solution is discussed in terms of existence, uniqueness, asymptotic consistency and physical admissibility.
引用
收藏
页码:613 / 628
页数:16
相关论文
共 39 条
  • [1] Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading
    Alderson, A.
    Alderson, K. L.
    Attard, D.
    Evans, K. E.
    Gatt, R.
    Grima, J. N.
    Miller, W.
    Ravirala, N.
    Smith, C. W.
    Zied, K.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) : 1042 - 1048
  • [2] [Anonymous], HOMOGENIZATION AVERA
  • [3] [Anonymous], 2003, WAVE PROPAGATION PER
  • [4] Computational dynamic homogenization for the analysis of dispersive waves in layered rock masses with periodic fractures
    Bacigalupo, A.
    Gambarotta, L.
    [J]. COMPUTERS AND GEOTECHNICS, 2014, 56 : 61 - 68
  • [5] Bacigalupo A, 2016, COMPOS B, DOI [10.1016/j.compositesb.2016.09.062, DOI 10.1016/J.C0MP0SITESB.2016.09.062]
  • [6] High-frequency parametric approximation of the Floquet-Bloch spectrum for anti-tetrachiral materials
    Bacigalupo, Andrea
    Lepidi, Marco
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 97-98 : 575 - 592
  • [7] Optimal design of auxetic hexachiral metamaterials with local resonators
    Bacigalupo, Andrea
    Lepidi, Marco
    Gnecco, Giorgio
    Gambarotta, Luigi
    [J]. SMART MATERIALS AND STRUCTURES, 2016, 25 (05)
  • [8] Simplified modelling of chiral lattice materials with local resonators
    Bacigalupo, Andrea
    Gambarotta, Luigi
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 83 : 126 - 141
  • [9] Auxetic anti-tetrachiral materials: Equivalent elastic properties and frequency band-gaps
    Bacigalupo, Andrea
    De Bellis, Maria Laura
    [J]. COMPOSITE STRUCTURES, 2015, 131 : 530 - 544
  • [10] Homogenization of periodic hexa- and tetrachiral cellular solids
    Bacigalupo, Andrea
    Gambarotta, Luigi
    [J]. COMPOSITE STRUCTURES, 2014, 116 : 461 - 476