Integral sliding mode-based attitude coordinated tracking for spacecraft formation with communication delays

被引:16
|
作者
Zhang, Jian [1 ]
Hu, Qinglei [2 ]
Xie, Wenbo [3 ]
机构
[1] Harbin Engn Univ, Coll Power & Energy Engn, Harbin, Heilongjiang, Peoples R China
[2] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
[3] Harbin Univ Sci & Technol, Coll Automat, Harbin, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Spacecraft formation; attitude coordinated tracking; integral sliding mode; communication delays; MULTIPLE RIGID BODIES; FINITE-TIME CONSENSUS; SYNCHRONIZATION CONTROL; MULTIAGENT SYSTEMS; DYNAMIC AGENTS; DESIGN; STABILIZATION; UNCERTAINTIES; DISTURBANCES; CONTROLLER;
D O I
10.1080/00207721.2017.1371359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the attitude coordinated tracking control for a group of rigid spacecraft under directed communication topology, in which inertia uncertainties, external disturbances, input saturation and constant time-delays between the formation members are handled. Initially, the nominal system with communication delays is studied. A delay-dependent controller is proposed by using Lyapunov-Krasovskii function and sufficient condition for system stability is derived. Then, an integral sliding manifold is designed and adaptive control approach is employed to deal with the total perturbation. Meanwhile, the boundary layer method is introduced to alleviate the unexpected chattering as system trajectories cross the switching surface. Finally, numerical simulation results are presented to validate the effectiveness and robustness of the proposed control strategy.
引用
收藏
页码:3254 / 3266
页数:13
相关论文
共 50 条
  • [31] Improved Adaptive Sliding Mode Control for Rigid Spacecraft Attitude Tracking
    Cong, Binglong
    Chen, Zhen
    Liu, Xiangdong
    JOURNAL OF AEROSPACE ENGINEERING, 2014, 27 (04)
  • [32] Adaptive Nonsingular Terminal Sliding Mode Control for Attitude Tracking of Spacecraft With Actuator Faults
    Jing, Chenghu
    Xu, Hongguang
    Niu, Xinjian
    Song, Xiaoming
    IEEE ACCESS, 2019, 7 : 31485 - 31493
  • [33] Attitude tracking control for spacecraft with robust adaptive RBFNN augmenting sliding mode control
    Zou, Yao
    AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 56 : 197 - 204
  • [34] Event-triggered integral sliding mode controller for rigid spacecraft attitude tracking with angular velocity constraint
    Zhou, Zhi-Gang
    Zhou, Di
    Zhang, Yingjing
    Chen, Xinwei
    Shi, Xiao-Ning
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (12) : 3283 - 3297
  • [35] Distributed attitude coordinated tracking control for spacecraft formation with state constraints
    Wang W.-J.
    Li C.-J.
    Sun Y.-C.
    Ma G.-F.
    Kongzhi yu Juece/Control and Decision, 2018, 33 (09): : 1584 - 1590
  • [36] Relative position coordinated control for spacecraft formation flying with communication delays
    Ran, Dechao
    Chen, Xiaoqian
    Misra, Arun K.
    Xiao, Bing
    ACTA ASTRONAUTICA, 2017, 137 : 302 - 311
  • [37] Attitude tracking control for spacecraft formation with time-varying delays and switching topology
    Yang, Hongjiu
    You, Xiu
    Hua, Changchun
    ACTA ASTRONAUTICA, 2016, 126 : 98 - 108
  • [38] Distributed attitude coordination tracking control for spacecraft formation with time-varying delays
    Zhu, Zhihao
    Guo, Yu
    Zhong, Chenxing
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (06) : 2082 - 2087
  • [39] Fuzzy-logic-based adaptive event-triggered sliding mode control for spacecraft attitude tracking
    Xing, Lei
    Zhang, Jianqiao
    Liu, Chuang
    Zhang, Xiao
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 108
  • [40] A novel predictor based optimal integral sliding-mode-based attitude tracking control of spacecraft under actuator's uncertainties and constraints
    Khodaverdian, Maria
    Gabrielyan, Yeva
    Hakobyan, Aleksandr
    Ijaz, Salaman
    Castaldi, Paolo
    CONTROL ENGINEERING PRACTICE, 2025, 158