Benchmarking the ambipolar conductivity of composite electrolytes for gas separation membranes

被引:11
|
作者
Patricio, Sonia G. [1 ]
Marques, Fernando M. B. [1 ]
机构
[1] Univ Aveiro, Dept Mat & Ceram Engn, CICECO, P-3810193 Aveiro, Portugal
关键词
composite electrolytes; impedance spectroscopy; ambipolar conductivity; ceria; alkaline carbonates; electrical microstructure; CO2 separation membranes; CARBON-DIOXIDE SEPARATION; DUAL-PHASE MEMBRANES; HIGH-TEMPERATURE; ION-TRANSPORT; FUEL-CELLS; PERFORMANCE; PERMEATION; OXIDE; STABILITY; DIFFUSION;
D O I
10.1002/er.3596
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Composite electrolytes including an oxide (Gd-doped ceria, 70, 80, and 90vol%) and a eutectic mixture of alkaline carbonates (Na2CO3 and Li2CO3) were produced by joint milling and firing of all constituents. The microstructure of these composites was studied by scanning electron microscopy/energy-dispersive X-ray spectroscopy, and they were further studied by impedance spectroscopy in air. Analysis of impedance data at low and high temperature was used to separate the electrical performance of each constituent phase, providing valuable information on the membrane electrical microstructure. Furthermore, a new tool is introduced for the assessment of the electrical microstructure efficiency of composite membranes, as a diagram relating the partial ionic transport numbers of main charge carriers and the membrane ambipolar conductivity. Using this type of diagram, the electrical features of actual composite membranes were mapped against an ideal membrane performance where microstructural effects are absent. The potential of this procedure to benchmark and discriminate the electrical characteristics of distinct membranes is demonstrated in this manner. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:2150 / 2161
页数:12
相关论文
共 50 条
  • [1] Assessment of bismuth oxide-based electrolytes for composite gas separation membranes
    Starykevich, M.
    Jamale, A.
    Marques, F. M. B.
    CERAMICS INTERNATIONAL, 2020, 46 (17) : 26705 - 26714
  • [2] Gas separation investigations on polyaniline composite membranes
    Stolarczyk, A
    Lapkowski, M
    Nowicka, M
    POLIMERY, 2000, 45 (11-12) : 814 - 817
  • [3] Multilayer composite SBS membranes for pervaporation and gas separation
    Bazzarelli, F.
    Bernardo, P.
    Tasselli, F.
    Clarizia, G.
    Dzyubenko, V. G.
    Vdovin, P.
    Jansen, J. C.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2011, 80 (03) : 635 - 642
  • [4] Novel Composite Membranes for Gas Separation: Preparation and Performance
    J.C.D. Da Costa
    G.Q. Lu
    H.Y. Zhu
    V. Rudolph
    Journal of Porous Materials, 1999, 6 : 143 - 151
  • [5] Novel composite membranes for gas separation: Preparation and performance
    Da Costa, JCD
    Lu, GQ
    Zhu, HY
    Rudolph, V
    JOURNAL OF POROUS MATERIALS, 1999, 6 (02) : 143 - 151
  • [6] Cellulose-Based Composite Gas Separation Membranes
    Syrtsova, D. A.
    Teplyakov, V. V.
    Filistovich, V. A.
    Savitskaya, T. A.
    Kimlenka, I. M.
    Makarevich, S. E.
    Grinshpan, D. D.
    MEMBRANES AND MEMBRANE TECHNOLOGIES, 2019, 1 (06) : 353 - 360
  • [7] Investigation of gas separation on polyaniline laminar composite membranes
    Stolarczyk, A
    Lapkowski, M
    SYNTHETIC METALS, 2001, 121 (1-3) : 1385 - 1386
  • [8] Carbon-zeolite composite membranes for gas separation
    Tin, PS
    Chung, TS
    Jiang, LY
    Kulprathipanja, S
    CARBON, 2005, 43 (09) : 2025 - 2027
  • [9] Cellulose-Based Composite Gas Separation Membranes
    D. A. Syrtsova
    V. V. Teplyakov
    V. A. Filistovich
    T. A. Savitskaya
    I. M. Kimlenka
    S. E. Makarevich
    D. D. Grinshpan
    Membranes and Membrane Technologies, 2019, 1 : 353 - 360
  • [10] Development and characterization of PPO composite membranes for gas separation
    Bove, L
    Clarizia, G
    Golemme, G
    Drioli, E
    MACROMOLECULAR SYMPOSIA, 1999, 138 : 93 - 97