Numerical Hermitian Yang-Mills connections and Kahler cone substructure

被引:17
作者
Anderson, Lara B. [1 ]
Braun, Volker [2 ]
Ovrut, Burt A. [1 ]
机构
[1] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[2] Dublin Inst Adv Studies, Dublin 4, Ireland
关键词
Differential and Algebraic Geometry; Superstrings and Heterotic Strings; Superstring Vacua; PROJECTIVE EMBEDDINGS; SCALAR CURVATURE; METRICS; MANIFOLDS; EXPANSION; ALGORITHM;
D O I
10.1007/JHEP01(2012)014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We further develop the numerical algorithm for computing the gauge connection of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In particular, recent work on the generalized Donaldson algorithm is extended to bundles with Kahler cone substructure on manifolds with h(1,1) > 1. Since the computation depends only on a one-dimensional ray in the Kahler moduli space, it can probe slope-stability regardless of the size of h(1,1). Suitably normalized error measures are introduced to quantitatively compare results for different directions in Kahler moduli space. A significantly improved numerical integration procedure based on adaptive refinements is described and implemented. Finally, a rapid computational check is proposed for probing the slope-stable stability properties of a given vector bundle.
引用
收藏
页数:38
相关论文
共 68 条
[1]  
Anderson L.B., 2008, ARXIV08083621
[2]  
Anderson L.B., NUMERICAL D IN PRESS
[3]   Monad bundles in heterotic string compactifications [J].
Anderson, Lara ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[4]   Heterotic compactification, an algorithmic approach [J].
Anderson, Lara B. ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (07)
[5]   Stabilizing all geometric moduli in heterotic Calabi-Yau vacua [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
PHYSICAL REVIEW D, 2011, 83 (10)
[6]   Stabilizing the complex structure in heterotic Calabi-Yau vacua [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (02)
[7]   Transitions in the web of heterotic vacua [J].
Anderson, Lara B. ;
Gray, James ;
Ovrut, Burt A. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2011, 59 (5-6) :327-371
[8]   Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories [J].
Anderson, Lara B. ;
Braun, Volker ;
Karp, Robert L. ;
Ovrut, Burt A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06)
[9]   Yukawa textures from heterotic stability walls [J].
Anderson, Lara B. ;
Gray, James ;
Ovrut, Burt .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05)
[10]   Yukawa Couplings in Heterotic Compactification [J].
Anderson, Lara B. ;
Gray, James ;
Grayson, Dan ;
He, Yang-Hui ;
Lukas, Andre .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (01) :95-127