GEOMETRIC PHASE AND TOPOLOGY QUANTUM GATES USING PARALLEL TRANSPORTATION

被引:0
|
作者
Gao, Yu-Mei [1 ,2 ]
Zhang, Xin-Ding [1 ]
Hu, Lian [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Inst Condensed Matter Phys, Guangzhou, Guangdong, Peoples R China
[2] Univ Elect Sci & Technol China, Zhongshan Inst, Dept Elect Engn, Zhongshan, Peoples R China
关键词
Geometric phase; quantum computation; topological phase; fault-tolerant quantum gates; parallel transportation;
D O I
10.1142/S0219887808003041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a novel evolution method to obtain pure geometric phase with orthogonal superposed initial state method (OGSM). As examples we illustrate in detail the geometric evolution both in NMR and superconducting Josephson junction systems, which may be further designed to construct fault-tolerant geometric quantum gates. In the end we also propose a simple way to construct topological quantum gates based on OGSM.
引用
收藏
页码:789 / 798
页数:10
相关论文
共 50 条
  • [1] Geometric phase gates in dissipative quantum dynamics
    Mueller, Kai
    Luoma, Kimmo
    Strunz, Walter T.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [2] Unconventional geometric quantum phase gates with two SQUIDs in a cavity
    Xia, Li-Xin
    Xie, Qiong-Tao
    OPTICS COMMUNICATIONS, 2008, 281 (09) : 2700 - 2704
  • [3] Unconventional geometric quantum phase gates with a cavity QED system
    Zheng, SB
    PHYSICAL REVIEW A, 2004, 70 (05): : 052320 - 1
  • [4] A Geometric Characterization of Quantum Gates
    He, Yi-Bin
    Wang, Li
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (07) : 2218 - 2227
  • [5] A Geometric Characterization of Quantum Gates
    Yi-Bin He
    Li Wang
    International Journal of Theoretical Physics, 2019, 58 : 2218 - 2227
  • [6] Quantum phase gates with geometric phases of spin-orbit modes
    Cruz, G. T. C.
    Carvalho, S. A.
    de Souza, C. E. R.
    Huguenin, J. A. O.
    QUANTUM INFORMATION PROCESSING, 2024, 23 (05)
  • [7] Decoherence of geometric phase gates
    Nazir, A
    Spiller, TP
    Munro, WJ
    PHYSICAL REVIEW A, 2002, 65 (04): : 423031 - 423035
  • [8] Inertial geometric quantum logic gates
    Turyansky, D.
    Ovdat, O.
    Dann, R.
    Aqua, Z.
    Kosloff, R.
    Dayan, B.
    Pick, A.
    PHYSICAL REVIEW APPLIED, 2024, 21 (05):
  • [9] COMPOSITE PULSES AS GEOMETRIC QUANTUM GATES
    Ota, Yukihiro
    Kondo, Yasushi
    DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 125 - 149
  • [10] Geometric quantum gates with superconducting qubits
    Kamleitner, I.
    Solinas, P.
    Mueller, C.
    Shnirman, A.
    Mottonen, M.
    PHYSICAL REVIEW B, 2011, 83 (21):