Lipid-Based Passivation in Nanofluidics

被引:74
|
作者
Persson, Fredrik [1 ,2 ]
Fritzsche, Joachim [1 ]
Mir, Kalim U. [3 ]
Modesti, Mauro [4 ]
Westerlund, Fredrik [5 ]
Tegenfeldt, Jonas O. [1 ,6 ]
机构
[1] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[2] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala, Sweden
[3] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[4] Univ Aix Marseille, Inst Paoli Calmettes, CNRS UMR7258,Inserm U1068, Ctr Rech Cancerol Marseille, Aix En Provence, France
[5] Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden
[6] Lund Univ, Div Solid State Phys, Lund, Sweden
基金
瑞典研究理事会;
关键词
Nanofluidics; passivation; antifouling; lipid bilayer; protein-DNA interactions; single molecules; SINGLE-MOLECULE; HYDROPHILIC SURFACES; DNA-MOLECULES; CHANNELS; DIFFUSION; GLYCOL); PROTEIN; BILAYER;
D O I
10.1021/nl204535h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA-DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein-DNA interactions with high spatial and temporal resolution.
引用
收藏
页码:2260 / 2265
页数:6
相关论文
共 50 条
  • [31] Emerging targets in lipid-based therapy
    Tucker, Stephanie C.
    Honn, Kenneth V.
    BIOCHEMICAL PHARMACOLOGY, 2013, 85 (05) : 673 - 688
  • [32] Lipid-based nanoparticles for treatment of cancer
    Sheoran, Sumit
    Arora, Swati
    Samsonraj, R.
    Govindaiah, Pilli
    Vuree, Sugunakar
    HELIYON, 2022, 8 (05)
  • [33] Lipid-based systemic delivery of siRNA
    Tseng, Yu-Cheng
    Mozumdar, Subho
    Huang, Leaf
    ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (09) : 721 - 731
  • [34] Microfluidic Manufacture of Lipid-Based Nanomedicines
    Osouli-Bostanabad, Karim
    Puliga, Sara
    Serrano, Dolores R.
    Bucchi, Andrea
    Halbert, Gavin
    Lalatsa, Aikaterini
    PHARMACEUTICS, 2022, 14 (09)
  • [35] Preclinical Evaluation of Lipid-Based Nanosystems
    Silva, Ana Catarina
    Sousa Lobo, Jose Manuel
    PHARMACEUTICS, 2021, 13 (05)
  • [36] Interactions of Apolipoproteins with Lipid-Based Nanoparticles
    Dalhaimer, Paul
    Florey, Brice
    Isaac, Sami
    ACS NANO, 2023, 17 (02) : 837 - 842
  • [37] Lipid-based formulations of amphotericin B
    Plotnick, AN
    JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION, 2000, 216 (06): : 838 - 841
  • [38] Lipid-based nanotherapeutics for siRNA delivery
    Schroeder, A.
    Levins, C. G.
    Cortez, C.
    Langer, R.
    Anderson, D. G.
    JOURNAL OF INTERNAL MEDICINE, 2010, 267 (01) : 9 - 21
  • [39] In vivo fate of lipid-based nanoparticles
    Qi, Jianping
    Zhuang, Jie
    Lu, Yi
    Dong, Xiaochun
    Zhao, Weili
    Wu, Wei
    DRUG DISCOVERY TODAY, 2017, 22 (01) : 166 - 172
  • [40] Lipid abnormalities and lipid-based repair strategies in atopic dermatitis
    Elias, Peter M.
    Wakefield, Joan
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2014, 1841 (03): : 323 - 330