Lipid-Based Passivation in Nanofluidics

被引:74
|
作者
Persson, Fredrik [1 ,2 ]
Fritzsche, Joachim [1 ]
Mir, Kalim U. [3 ]
Modesti, Mauro [4 ]
Westerlund, Fredrik [5 ]
Tegenfeldt, Jonas O. [1 ,6 ]
机构
[1] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[2] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala, Sweden
[3] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[4] Univ Aix Marseille, Inst Paoli Calmettes, CNRS UMR7258,Inserm U1068, Ctr Rech Cancerol Marseille, Aix En Provence, France
[5] Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden
[6] Lund Univ, Div Solid State Phys, Lund, Sweden
基金
瑞典研究理事会;
关键词
Nanofluidics; passivation; antifouling; lipid bilayer; protein-DNA interactions; single molecules; SINGLE-MOLECULE; HYDROPHILIC SURFACES; DNA-MOLECULES; CHANNELS; DIFFUSION; GLYCOL); PROTEIN; BILAYER;
D O I
10.1021/nl204535h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA-DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein-DNA interactions with high spatial and temporal resolution.
引用
收藏
页码:2260 / 2265
页数:6
相关论文
共 50 条
  • [21] Lipid-based antigen delivery systems
    Park J.Y.
    Kim M.-G.
    Shim G.
    Oh Y.-K.
    Journal of Pharmaceutical Investigation, 2016, 46 (4) : 295 - 304
  • [22] Lipid-based nanoformulations for peptide delivery
    Matougui, Nada
    Boge, Lukas
    Groo, Anne-Claire
    Umerska, Anita
    Ringstad, Lovisa
    Bysell, Helena
    Saulnier, Patrick
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2016, 502 (1-2) : 80 - 97
  • [23] Lipid-based patterning of the immunological synapse
    Huse, Morgan
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2014, 42 : 1506 - 1511
  • [24] Surface Modification of Lipid-Based Nanoparticles
    Xu, Yining
    Fourniols, Thibaut
    Labrak, Yasmine
    Preat, Veronique
    Beloqui, Ana
    des Rieux, Anne
    ACS NANO, 2022, 16 (05) : 7168 - 7196
  • [25] Lipid-Based Drug Delivery Systems
    Shrestha, Hina
    Bala, Rajni
    Arora, Sandeep
    JOURNAL OF PHARMACEUTICS, 2014, 2014
  • [26] LIPID-BASED CARRIER SYSTEMS FOR DRUGS
    JEPPSSON, R
    NUTRITION, 1987, 3 (05) : 360 - 361
  • [27] Lipid-based nanosystems for wound healing
    Cortesi, Rita
    Sguizzato, Maddalena
    Ferrara, Francesca
    EXPERT OPINION ON DRUG DELIVERY, 2024, 21 (08) : 1191 - 1211
  • [28] Lipid-based vectors for siRNA delivery
    Zhang, Shubiao
    Zhi, Defu
    Huang, Leaf
    JOURNAL OF DRUG TARGETING, 2012, 20 (09) : 724 - 735
  • [29] Lipid-based formulas of amphotericin B
    Veerareddy, PR
    Vobalaboina, V
    DRUGS OF TODAY, 2004, 40 (02) : 133 - 145
  • [30] Lipid-based mechanisms for vesicle fission
    Markvoort, A. J.
    Smeijers, A. F.
    Pieterse, K.
    van Santen, R. A.
    Hilbers, P. A. J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (20): : 5719 - 5725