Lipid-Based Passivation in Nanofluidics

被引:74
|
作者
Persson, Fredrik [1 ,2 ]
Fritzsche, Joachim [1 ]
Mir, Kalim U. [3 ]
Modesti, Mauro [4 ]
Westerlund, Fredrik [5 ]
Tegenfeldt, Jonas O. [1 ,6 ]
机构
[1] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[2] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala, Sweden
[3] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[4] Univ Aix Marseille, Inst Paoli Calmettes, CNRS UMR7258,Inserm U1068, Ctr Rech Cancerol Marseille, Aix En Provence, France
[5] Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden
[6] Lund Univ, Div Solid State Phys, Lund, Sweden
基金
瑞典研究理事会;
关键词
Nanofluidics; passivation; antifouling; lipid bilayer; protein-DNA interactions; single molecules; SINGLE-MOLECULE; HYDROPHILIC SURFACES; DNA-MOLECULES; CHANNELS; DIFFUSION; GLYCOL); PROTEIN; BILAYER;
D O I
10.1021/nl204535h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA-DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein-DNA interactions with high spatial and temporal resolution.
引用
收藏
页码:2260 / 2265
页数:6
相关论文
共 50 条
  • [1] Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development
    Nakmode, Deepa
    Bhavana, Valamla
    Thakor, Pradip
    Madan, Jitender
    Singh, Pankaj Kumar
    Singh, Shashi Bala
    Rosenholm, Jessica M.
    Bansal, Kuldeep K.
    Mehra, Neelesh Kumar
    PHARMACEUTICS, 2022, 14 (04)
  • [2] Lipid-based cosmeceuticals
    Compton, David L.
    INFORM - International News on Fats, Oils and Related Materials, 2006, 17 (12): : 793 - 795
  • [3] LIPID-BASED FAT SUBSTITUTES
    AKOH, CC
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 1995, 35 (05) : 405 - 430
  • [4] Lipid-based antifungal agents
    Arikan, S
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2002, 7 (02) : 220 - 221
  • [5] Lipid-based biomarkers for cancer
    Fernandis, Aaron Zefrin
    Wenk, Markus Rene
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2009, 877 (26): : 2830 - 2835
  • [6] Lipid-based regulators of immunity
    Johnson, Wade T.
    Dorn, Nicholas C.
    Ogbonna, Dora A.
    Bottini, Nunzio
    Shah, Nisarg J.
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2022, 7 (02)
  • [7] Lipid-based regulators of immunity
    Johnson, Wade T.
    Dorn, Nicholas C.
    Ogbonna, Dora A.
    Bottini, Nunzio
    Shah, Nisarg J.
    Bioengineering and Translational Medicine, 2022, 7 (02):
  • [8] Lipid-based nanovesicles for nanomedicine
    Grimaldi, N.
    Andrade, F.
    Segovia, N.
    Ferrer-Tasies, L.
    Sala, S.
    Veciana, J.
    Ventosa, N.
    CHEMICAL SOCIETY REVIEWS, 2016, 45 (23) : 6520 - 6545
  • [9] Oral lipid-based formulations
    Hauss, David J.
    ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (07) : 667 - 676
  • [10] Lipid-Based Nanotechnology: Liposome
    Jiang, Yanhao
    Li, Wenpan
    Wang, Zhiren
    Lu, Jianqin
    PHARMACEUTICS, 2024, 16 (01)