Rigidity of complete noncompact bach-flat n-manifolds

被引:6
|
作者
Chu, Yawei [1 ,2 ]
Feng, Pinghua [3 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Fuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236037, Peoples R China
[3] Henan Inst Educ, Dept Math, Zhengzhou 450014, Peoples R China
关键词
Bach-flat; Rigidity; Trace-free curvature tensor; Constant curvature space; SCALAR CURVATURE; METRICS; THEOREM;
D O I
10.1016/j.geomphys.2012.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-n, g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L-2-norm of the trace-free Riemannian curvature tensor (R) over circlem is finite. In this paper, we prove that (M-n, g) is a constant curvature space if the L-n/2-norm of (R) over circlem is sufficiently small. Moreover, we get a gap theorem for (M-n, g) with positive scalar curvature. This can be viewed as a generalization of our earlier resuits of 4-dimensional Bach-flat manifolds with constant scalar curvature R >= 0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n > 9, we derive a rigidity result for R < 0. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2227 / 2233
页数:7
相关论文
共 50 条
  • [41] Discs area-minimizing in mean convex Riemannian n-manifolds
    Barbosa, Ezequiel
    Conrado, Franciele
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (06) : 1361 - 1382
  • [42] A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds
    Caminha, A.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (06) : 652 - 659
  • [43] Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds
    Li, Xinyang
    Mao, Jing
    Zeng, Lingzhong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [44] Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds
    Xinyang Li
    Jing Mao
    Lingzhong Zeng
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [45] Prescribed k-Curvature Problems on Complete Noncompact Riemannian Manifolds
    Fu, Jixiang
    Sheng, Weimin
    Yuan, Lixia
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (23) : 9559 - 9592
  • [46] Bach tensor on N(Κ)-paracontact metric 3-manifolds
    Mirji, K. K.
    Harish, H.
    Prakasha, D. G.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 884 - 893
  • [47] Certain Results OF (LCS)n-Manifolds Endowed with E-Bochner Curvature Tensor
    Kumar, R. T. Naveen
    Reddy, P. Siva Kota
    Venkatesha
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 11 - 11
  • [48] Rigidity Theorems of Complete Kahler-Einstein Manifolds and Complex Space Forms
    Chong, Tian
    Dong, Yuxin
    Lin, Hezi
    Ren, Yibin
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (02) : 339 - 356
  • [49] Complete noncompact Spin(7) manifolds from self-dual Einstein 4-orbifolds
    Foscolo, Lorenzo
    GEOMETRY & TOPOLOGY, 2021, 25 (01) : 339 - 408
  • [50] A sharp Liouville principle for Δmu + up|delu|q ≤ 0 on geodesically complete noncompact Riemannian manifolds
    Sun, Yuhua
    Xiao, Jie
    Xu, Fanheng
    MATHEMATISCHE ANNALEN, 2022, 384 (3-4) : 1309 - 1341