Rigidity of complete noncompact bach-flat n-manifolds

被引:6
|
作者
Chu, Yawei [1 ,2 ]
Feng, Pinghua [3 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Fuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236037, Peoples R China
[3] Henan Inst Educ, Dept Math, Zhengzhou 450014, Peoples R China
关键词
Bach-flat; Rigidity; Trace-free curvature tensor; Constant curvature space; SCALAR CURVATURE; METRICS; THEOREM;
D O I
10.1016/j.geomphys.2012.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-n, g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L-2-norm of the trace-free Riemannian curvature tensor (R) over circlem is finite. In this paper, we prove that (M-n, g) is a constant curvature space if the L-n/2-norm of (R) over circlem is sufficiently small. Moreover, we get a gap theorem for (M-n, g) with positive scalar curvature. This can be viewed as a generalization of our earlier resuits of 4-dimensional Bach-flat manifolds with constant scalar curvature R >= 0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n > 9, we derive a rigidity result for R < 0. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2227 / 2233
页数:7
相关论文
共 50 条
  • [31] The Yamabe problem and applications on noncompact complete Riemannian manifolds
    Kim, ST
    GEOMETRIAE DEDICATA, 1997, 64 (03) : 373 - 381
  • [32] The Yamabe Problem and Applications on Noncompact Complete Riemannian Manifolds
    Seongtag Kim
    Geometriae Dedicata, 1997, 64 : 373 - 381
  • [33] Some Lp Rigidity Results for Complete Manifolds with Harmonic Curvature
    Hai-Ping Fu
    Li-Qun Xiao
    Potential Analysis, 2018, 48 : 239 - 255
  • [34] Bochner-Kähler and Bach flat manifolds
    Amalendu Ghosh
    Ramesh Sharma
    Archiv der Mathematik, 2019, 113 : 551 - 560
  • [35] Rigidity of Complete Manifolds with Weighted Poincare Inequality
    Wang, Lihan
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (11)
  • [36] Rigidity of complete manifolds with parallel Cotton tensor
    Yawei Chu
    Shouwen Fang
    Archiv der Mathematik, 2017, 109 : 179 - 189
  • [37] Rigidity of Complete Manifolds with Weighted Poincaré Inequality
    Lihan Wang
    The Journal of Geometric Analysis, 2022, 32
  • [38] Rigidity of complete manifolds with parallel Cotton tensor
    Chu, Yawei
    Fang, Shouwen
    ARCHIV DER MATHEMATIK, 2017, 109 (02) : 179 - 189
  • [39] Gradient estimates for a weighted nonlinear equation on complete noncompact manifolds
    Li, Jing
    He, Guoqing
    Zhao, Peibiao
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (3-4): : 377 - 392
  • [40] Some L p Rigidity Results for Complete Manifolds with Harmonic Curvature
    Fu, Hai-Ping
    Xiao, Li-Qun
    POTENTIAL ANALYSIS, 2018, 48 (02) : 239 - 255