GOOD p-ARY QUASIC-CYCLIC CODES FROM CYCLIC CODES OVER Fp + νFp

被引:0
作者
Shi, Minjia [1 ]
Yang, Shanlin [2 ]
Zhu, Shixin [3 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Inst Comp Network Syst, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, Sch Math Sci, Hefei 230009, Peoples R China
关键词
Cyclic code; generator matrix; Gray image; linear code;
D O I
10.1007/s11424-012-0076-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a Gray map from (F-p + nu F-p)(n) to F-p(2n), and describes the relationship between codes over F-p + nu F-p and their Gray images. The authors prove that every cyclic code of arbitrary length n over F-p + nu F-p is principal, and determine its generator polynomial as well as the number of cyclic codes. Moreover, the authors obtain many best-known p-ary quasic-cyclic codes in terms of their parameters via the Gray map.
引用
收藏
页码:375 / 384
页数:10
相关论文
共 12 条
[1]  
[Anonymous], J THEORIE NOMBRES BO
[2]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[3]   Applications of coding theory to the construction of modular lattices [J].
Bachoc, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (01) :92-119
[4]  
Cengellenmis Y., 2010, INT J ALGEBRA, V4, P253
[5]  
Gulliver TA, 2001, DESIGN CODE CRYPTOGR, V22, P89, DOI 10.1023/A:1008355310919
[6]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[7]  
Kanwar P., 1997, Finite Fields and their Applications, V3, P334, DOI 10.1006/ffta.1997.0189
[8]   On the algebraic structure of quasi-cyclic codes I:: Finite fields [J].
Ling, S ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2751-2760
[9]  
Ling S., 2004, CODING THEORY
[10]  
Ozen M, 2006, DESIGN CODE CRYPTOGR, V38, P17, DOI 10.1007/s10623-004-5658-5