Uniqueness for a class of singular quasilinear Dirichlet problem

被引:4
|
作者
Chu, K. D. [1 ]
Hai, D. D. [2 ]
Shivaji, R. [3 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[3] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
关键词
Singular p-Laplacian; Uniqueness; Positive solutions; NONLINEAR ELLIPTIC-EQUATIONS; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; PARAMETER; NUMBER;
D O I
10.1016/j.aml.2020.106306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness of positive solutions for the problem -Delta(p)u = lambda f(u)/u(alpha) in Omega, u = 0 on partial derivative Omega where p > 1+ alpha, alpha is an element of (0, 1), Omega is bounded domain in R(n )with smooth boundary partial derivative Omega f [0, infinity) -> (0, infinity) is nondecreasing with f(z)/z(alpha) decreasing for z large, and lambda is a large parameter. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic EquationsWith Gradient Dependence
    Motreanu, Dumitru
    Vetro, Calogero
    Vetro, Francesca
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (12) : 1551 - 1561
  • [32] Global structure of positive solutions for a singular quasilinear elliptic problem
    Ma, Ruyun
    Yang, Lijuan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (02) : 199 - 212
  • [33] Multiplicity for a strongly singular quasilinear problem via bifurcation theory
    Giacomoni, Jacques
    Dos Santos, Lais Moreira
    Santos, Carlos Alberto
    BULLETIN OF MATHEMATICAL SCIENCES, 2023, 13 (01)
  • [34] UNIQUENESS OF POSITIVE AND COMPACTON-TYPE SOLUTIONS FOR A RESONANT QUASILINEAR PROBLEM
    Anello, Giovanni
    Vilasi, Luca
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (02) : 565 - 575
  • [35] UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2059 - 2067
  • [36] Existence results for a class of quasilinear Schrodinger equations with singular or vanishing potentials
    Badiale, Marino
    Guida, Michela
    Rolando, Sergio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 220
  • [37] BOUNDARY BEHAVIOR OF SOLUTIONS TO A SINGULAR DIRICHLET PROBLEM WITH A NONLINEAR CONVECTION
    Li, Bo
    Zhang, Zhijun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [38] UNIQUENESS AND SIGN PROPERTIES OF MINIMIZERS IN A QUASILINEAR INDEFINITE PROBLEM
    Kaufmann, Uriel
    Quoirin, Humberto Ramos
    Umezu, Kenichiro
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (06) : 2313 - 2322
  • [39] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR QUASILINEAR ELLIPTIC SYSTEMS
    Hai, D. D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (01) : 223 - 228
  • [40] On Singular Quasilinear Elliptic Equations in RN
    dos Santos, Gelson C. G.
    Figueiredo, Giovany M.
    Muhassua, Sabado Saide
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)