A TIME-DEPENDENT SWITCHING MEAN-FIELD GAME ON NETWORKS MOTIVATED BY OPTIMAL VISITING PROBLEMS

被引:0
作者
Bagagiolo, Fabio [1 ]
Marzufero, Luciano [1 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, TN, Italy
来源
JOURNAL OF DYNAMICS AND GAMES | 2022年 / 10卷 / 02期
关键词
Mean-field games; switching; networks; optimal visiting; optimal path; impulsive continuity equations; SYSTEMS;
D O I
10.3934/jdg.2022019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from 0 to 1 of one component of the string p = (p1, ... , p(n)) which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by i = 1, ... , n. The goal is to reach the final string (1, ... , 1) in the final time T, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated epsilon-mean-field equilibrium and then address the passage to the limit when epsilon goes to 0.
引用
收藏
页码:151 / 180
页数:30
相关论文
共 23 条
  • [1] The orienteering problem: a hybrid control formulation
    Bagagiolo, Fabio
    Festa, Adriano
    Marzufero, Luciano
    [J]. IFAC PAPERSONLINE, 2021, 54 (05): : 175 - 180
  • [2] A hybrid control framework for an optimal visiting problem
    Bagagiolo, Fabio
    Festa, Adriano
    Marzufero, Luciano
    [J]. IFAC PAPERSONLINE, 2021, 54 (05) : 241 - 246
  • [3] ORIGIN-TO-DESTINATION NETWORK FLOW WITH PATH PREFERENCES AND VELOCITY CONTROLS: A MEAN FIELD GAME-LIKE APPROACH
    Bagagiolo, Fabio
    Maggistro, Rosario
    Pesenti, Raffaele
    [J]. JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (04): : 359 - 380
  • [4] Optimal Control of the Mean Field Equilibrium for a Pedestrian Tourists' Flow Model
    Bagagiolo, Fabio
    Faggian, Silvia
    Maggistro, Rosario
    Pesenti, Raffaele
    [J]. NETWORKS & SPATIAL ECONOMICS, 2022, 22 (02) : 243 - 266
  • [5] Fokker-Planck equations of jumping particles and mean field games of impulse control
    Bertucci, Charles
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05): : 1211 - 1244
  • [6] Optimal stopping in mean field games, an obstacle problem approach
    Bertucci, Charles
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 120 : 165 - 194
  • [7] TRANSPORT OF MEASURES ON NETWORKS
    Camilli, Fabio
    De Maio, Raul
    Tosin, Andrea
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (02) : 191 - 215
  • [8] A MODEL PROBLEM FOR MEAN FIELD GAMES ON NETWORKS
    Camilli, Fabio
    Carlini, Elisabetta
    Marchi, Claudio
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4173 - 4192
  • [9] MEAN FIELD GAMES SYSTEMS OF FIRST ORDER
    Cardaliaguet, Pierre
    Graber, P. Jameson
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) : 690 - 722
  • [10] Managing crowded museums: Visitors flow measurement, analysis, modeling, and optimization
    Centorrino, P.
    Corbetta, A.
    Cristiani, E.
    Onofri, E.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 53