HYPERKAHLER STRUCTURE OF THE TAUB-NUT METRIC

被引:6
|
作者
Gaeta, G. [1 ]
Rodriguez, M. A. [2 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
关键词
Hyperkahler manifolds; Taub-NUT metric; KAHLER GEOMETRY; MODULI SPACES; CONSTRUCTION; INSTANTONS; NEWMAN; UNTI;
D O I
10.1142/S1402925112500143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Taub-NUT four-dimensional space-time can be obtained from Euclidean eight-dimensional one through a momentum map construction; the HKLR theorem [9] guarantees the hyperkahler structure of R-8 descends to a hyperkahler structure in the Taub-NUT space. Here we present a detailed and fully explicit construction of the hyperkahler structure of a space-time with a Taub-NUT metric.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 49 条
  • [1] Hyperkähler Structure of the Taub-NUT Metric
    G. Gaeta
    M. A. Rodríguez
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 226 - 235
  • [2] Circular orbits in the Taub-NUT and massless Taub-NUT spacetime
    Pradhan, Parthapratim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (07)
  • [3] TAUB-NUT CRYSTAL
    Imazato, Harunobu
    Mizoguchi, Shun'Ya
    Yata, Masaya
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (30-31): : 5143 - 5169
  • [4] Taub-NUT solutions in conformal electrodynamics
    Bordo, Alvaro Ballon
    Kubiznak, David
    Perche, Tales Rick
    PHYSICS LETTERS B, 2021, 817
  • [5] Single Kerr-Schild metric for Taub-NUT instanton
    Kim, Joon-Hwi
    PHYSICAL REVIEW D, 2025, 111 (02)
  • [6] The extended thermodynamic phase structure of Taub-NUT and Taub-Bolt
    Johnson, Clifford V.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (22)
  • [7] Thermodynamics of Lorentzian Taub-NUT spacetimes
    Hennigar, Robie A.
    Kubiznak, David
    Mann, Robert B.
    PHYSICAL REVIEW D, 2019, 100 (06)
  • [8] Twisted black hole is Taub-NUT
    Ong, Yen Chin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (01):
  • [9] Instantons on the Taub-NUT space
    Cherkis, Sergey A.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (02) : 609 - 641
  • [10] Scattering on self-dual Taub-NUT
    Adamo, Tim
    Bogna, Giuseppe
    Mason, Lionel
    Sharma, Atul
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (01)