Multi-scale and real-time non-parametric approach for anomaly detection and localization

被引:116
|
作者
Bertini, Marco [1 ]
Del Bimbo, Alberto [1 ]
Seidenari, Lorenzo [1 ]
机构
[1] Univ Florence, MICC, Florence, Italy
关键词
Video surveillance; Anomaly detection; Space-time features; EVENT DETECTION; SURVEILLANCE;
D O I
10.1016/j.cviu.2011.09.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose an approach for anomaly detection and localization, in video surveillance applications, based on spatio-temporal features that capture scene dynamic statistics together with appearance. Real-time anomaly detection is performed with an unsupervised approach using a non-parametric modeling, evaluating directly multi-scale local descriptor statistics. A method to update scene statistics is also proposed, to deal with the scene changes that typically occur in a real-world setting. The proposed approach has been tested on publicly available datasets, to evaluate anomaly detection and localization, and outperforms other state-of-the-art real-time approaches. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:320 / 329
页数:10
相关论文
共 50 条
  • [21] Real-time Anomaly Detection with HMOF Feature
    Zhu, Huihui
    Liu, Bin
    Lu, Yan
    Li, Weihai
    Yu, Nenghai
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2018), 2018, : 49 - 54
  • [22] Real-Time Anomaly Detection in Edge Streams
    Bhatia, Siddharth
    Liu, Rui
    Hooi, Bryan
    Yoon, Minji
    Shin, Kijung
    Faloutsos, Christos
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (04)
  • [23] Real-Time Anomaly Detection of Short Time-Scale GWAC Survey Light Curves
    Feng, Tianzhi
    Du, Zhihui
    Sun, Yankui
    Wei, Jianyan
    Bi, Jing
    Liu, Jason
    2017 IEEE 6TH INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS 2017), 2017, : 224 - 231
  • [24] Knowledge Distillation Anomaly Detection with Multi-Scale Feature Fusion
    Yadang C.
    Liuren C.
    Wenbin Y.
    Jiale Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (10): : 1542 - 1549
  • [25] MTDiff: Visual anomaly detection with multi-scale diffusion models
    Wang, Xubin
    Li, Wenju
    He, Xiangjian
    KNOWLEDGE-BASED SYSTEMS, 2024, 302
  • [26] ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning
    Jin, Ming
    Liu, Yixin
    Zheng, Yu
    Chi, Lianhua
    Li, Yuan-Fang
    Pan, Shirui
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3122 - 3126
  • [27] A Multi-Scale A Contrario method for Unsupervised Image Anomaly Detection
    Tailanian, Matias
    Muse, Pablo
    Pardo, Alvaro
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 179 - 184
  • [28] Developing an Unsupervised Real-Time Anomaly Detection Scheme for Time Series With Multi-Seasonality
    Wu, Wentai
    He, Ligang
    Lin, Weiwei
    Su, Yi
    Cui, Yuhua
    Maple, Carsten
    Jarvis, Stephen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (09) : 4147 - 4160
  • [29] A system architecture for real-time anomaly detection in large-scale NFV systems
    Gulenko, Anton
    Wallschlaeger, Marcel
    Schmidt, Florian
    Kao, Odej
    Liu, Feng
    11TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2016) / THE 13TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2016) / AFFILIATED WORKSHOPS, 2016, 94 : 491 - 496
  • [30] Stationary Multi-scale Hierarchical Dilated Graph Convolution for Multivariate Time Series Anomaly Detection
    Liang, Lifang
    Qiu, Xuyi
    Zhang, Yan
    Guan, Donghai
    Zhang, Ji
    Yuan, Weiwei
    BIG DATA AND SECURITY, ICBDS 2023, PT II, 2024, 2100 : 52 - 66