THE ENERGY-MOMENTUM TENSOR ON LOW DIMENSIONAL Spinc MANIFOLDS

被引:1
作者
Habib, Georges [1 ]
Nakad, Roger [2 ]
机构
[1] Lebanese Univ, Dept Math, Fac Sci 2, Fanar Matn, Lebanon
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
Spin(c) structures; Dirac operator; eigenvalues; Energy-Momentum tensor; compact surfaces; isometric immersions; KILLING SPINORS; DIRAC OPERATOR; EIGENVALUE;
D O I
10.1142/S0129167X12500905
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On a compact surface endowed with any Spin(c) structure, we give a formula involving the Energy-Momentum tensor in terms of geometric quantities. A new proof of a Bar-type inequality for the eigenvalues of the Dirac operator is given. The round sphere S-2 with its canonical Spin(c) structure satisfies the limiting case. Finally, we give a spinorial characterization of immersed surfaces in S-2 x R by solutions of the generalized Killing spinor equation associated with the induced Spin(c) structure on S-2 x R.
引用
收藏
页数:14
相关论文
共 23 条
[1]   LOWER EIGENVALUE ESTIMATES FOR DIRAC OPERATORS [J].
BAR, C .
MATHEMATISCHE ANNALEN, 1992, 293 (01) :39-46
[2]   Zero sets of solutions to semilinear elliptic systems of first order [J].
Bär, C .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :183-202
[3]   SPINOR, DIRAC OPERATOR AND CHANGE OF THE METRIC [J].
BOURGUIGNON, JP ;
GAUDUCHON, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :581-599
[4]   ISOMETRIC IMMERSIONS INTO Sn x R AND Hn x R AND APPLICATIONS TO MINIMAL SURFACES [J].
Daniel, Benoit .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6255-6282
[5]   Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors [J].
Friedrich, T ;
Kim, EC .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (1-2) :1-14
[6]   On the spinor representation of surfaces in Euclidean 3-space [J].
Friedrich, T .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) :143-157
[7]  
Friedrich T., 2000, Graduate Studies in Mathematics, V25
[8]  
Habib G., CEN EUR J M IN PRESS
[9]   Energy-momentum tensor on foliations [J].
Habib, Georges .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (11) :2234-2248
[10]   Generalized Killing spinors and conformal eigenvalue estimates for Spinc manifolds [J].
Herzlich, M ;
Moroianu, A .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (04) :341-370