Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects

被引:144
作者
Foteinopoulou, S
Soukoulis, CM
机构
[1] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Res Ctr Crete, Iraklion 71110, Crete, Greece
关键词
D O I
10.1103/PhysRevB.72.165112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We systematically study a collection of refractive phenomena that can possibly occur at the interface of a two-dimensional photonic crystal with the use of the wave vector diagram formalism. Cases with a single propagating beam (in the positive or negative direction) as well as cases with birefringence were observed. We examine carefully the conditions to obtain a single propagating beam inside the photonic crystal lattice. Our results indicate that the presence of multiple reflected beams in the medium of incidence is neither a prerequisite nor does it imply multiple refracted beams. We characterize our results with respect to the origin of the propagating beam and the nature of propagation (left-handed or not). We identified four distinct cases that lead to a negatively refracted beam. Under these findings, the definition of phase velocity in a periodic medium is reexamined and its physical interpretation discussed. To determine the "rightness" of propagation, we propose a wedge-type experiment. We discuss the intricate details for an appropriate wedge design for different types of cases in triangular and square structures. We extend our theoretical analysis and examine our conclusions as one moves from the limit of photonic crystals with high-index contrast between the constituent dielectrics to photonic crystals with low modulation of the refractive index. Finally, we examine the "rightness" of propagation in the one-dimensional multilayer medium and obtain conditions that are different from those of two-dimensional systems.
引用
收藏
页数:20
相关论文
共 63 条
[11]  
BUSCH K, COMMUNICATION
[12]   Superprism effect in bidimensional rectangular photonic crystals [J].
Cabuz, AI ;
Centeno, E ;
Cassagne, D .
APPLIED PHYSICS LETTERS, 2004, 84 (12) :2031-2033
[13]   Terahertz radiation from oscillating electrons in laser-induced wake fields [J].
Cao, Li-Hua ;
Yu, Wei ;
Xu, Han ;
Zheng, Chun-Yang ;
Liu, Zhan-Jun ;
Li, Bin ;
Bogaerts, A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (4 2) :046408-1
[14]   Subwavelength resolution in a two-dimensional photonic-crystal-based superlens [J].
Cubukcu, E ;
Aydin, K ;
Ozbay, E ;
Foteinopoulou, S ;
Soukoulis, CM .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[15]   Negative refraction by photonic crystals [J].
Cubukcu, E ;
Aydin, K ;
Ozbay, E ;
Foteinopoulou, S ;
Soukoulis, CM .
NATURE, 2003, 423 (6940) :604-605
[16]   EFFECTIVE DIELECTRIC-CONSTANT OF PERIODIC COMPOSITE STRUCTURES [J].
DATTA, S ;
CHAN, CT ;
HO, KM ;
SOUKOULIS, CM .
PHYSICAL REVIEW B, 1993, 48 (20) :14936-14943
[17]   Negative refraction and left-handed behavior in two-dimensional photonic crystals [J].
Foteinopoulou, S ;
Soukoulis, CM .
PHYSICAL REVIEW B, 2003, 67 (23)
[18]   Refraction in media with a negative refractive index [J].
Foteinopoulou, S ;
Economou, EN ;
Soukoulis, CM .
PHYSICAL REVIEW LETTERS, 2003, 90 (10) :4
[19]   Anomalous refractive properties of photonic crystals [J].
Gralak, B ;
Enoch, S ;
Tayeb, G .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (06) :1012-1020
[20]   Photonic band structure computations [J].
Hermann, D ;
Frank, M ;
Busch, K ;
Wölfle, P .
OPTICS EXPRESS, 2001, 8 (03) :167-172