Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications

被引:27
作者
Boland, John B. [1 ,2 ,3 ]
Tian, Ruiyuan [1 ,2 ,3 ]
Harvey, Andrew [1 ,2 ,3 ]
Vega-Mayoral, Victor [1 ,2 ,3 ]
Griffin, Aideen [1 ,2 ,3 ]
Horvath, Dominik, V [1 ,2 ,3 ]
Gabbett, Cian [1 ,2 ,3 ]
Breshears, Madeleine [1 ,2 ,3 ]
Pepper, Joshua [4 ]
Li, Yanguang [5 ]
Coleman, Jonathan N. [1 ,2 ,3 ]
机构
[1] Trinity Coll Dublin, CRANN Res Ctr, Dublin 2, Ireland
[2] Trinity Coll Dublin, AMBER Res Ctr, Dublin 2, Ireland
[3] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[4] Dublin Inst Technol, Sch Chem & Pharmaceut Sci, Kevins St, Dublin 8, Ireland
[5] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
基金
爱尔兰科学基金会;
关键词
exfoliation; stability; battery; TRANSITION-METAL DICHALCOGENIDES; PERFORMANCE; SENSITIVITY; ELECTRODES; GRAPHENE; ANODE; MONOLAYER; EVOLUTION; EDGE;
D O I
10.1088/2053-1583/ab89e6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The propensity of many 2D materials to oxidize in ambient conditions can complicate production and limit applications potential. Here we describe ambient liquid phase exfoliation of GeS, a layered material known for its chemical instability. Ambient exfoliation in organic solvents such as N-methyl-pyrrolidone yields good quality multi-layer GeS nanosheets. Although oxidation appears to occur with a time constant of similar to 10 d, the data suggests it to be limited to nanosheet edges leaving the basal plane intact. The rate of oxidation is slow enough to allow processing of the dispersions. For example, it was possible to size-select GeS nanosheets and characterize the size-dependence of nanosheet optical properties, leading to the observation of significant changes in bandgap with nanosheet thickness. Additionally, we were able to fabricate the nanosheets into lithium ion battery anodes using carbon nanotubes as both binder and conductive additive. These electrodes were relatively stable, showing similar to 0.2% capacity decay per cycle, and displayed low-rate capacity of 1523 mAh g(-1) which is within 93% of the theoretical value. However, detailed analysis showed relatively poor rate performance, possibly due to nanosheet alignment.
引用
收藏
页数:14
相关论文
共 73 条
[1]   Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells [J].
Antunez, Priscilla D. ;
Buckley, Jannise J. ;
Brutchey, Richard L. .
NANOSCALE, 2011, 3 (06) :2399-2411
[2]   Equipartition of Energy Defines the Size-Thickness Relationship in Liquid-Exfoliated Nanosheets [J].
Backes, Claudia ;
Campi, Davide ;
Szydlowska, Beata M. ;
Synnatschke, Kevin ;
Ojala, Ezgi ;
Rashvand, Farnia ;
Harvey, Andrew ;
Griffin, Aideen ;
Sofer, Zdenek ;
Marzari, Nicola ;
Coleman, Jonathan N. ;
O'Regan, David D. .
ACS NANO, 2019, 13 (06) :7050-7061
[3]   Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation [J].
Backes, Claudia ;
Szydlowska, Beata M. ;
Harvey, Andrew ;
Yuan, Shengjun ;
Vega-Mayoral, Victor ;
Davies, Ben R. ;
Zhao, Pei-liang ;
Hanlon, Damien ;
Santos, Elton J. G. ;
Katsnelson, Mikhail I. ;
Blau, Werner J. ;
Gadermaier, Christoph ;
Coleman, Jonathan N. .
ACS NANO, 2016, 10 (01) :1589-1601
[4]   Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets [J].
Backes, Claudia ;
Smith, Ronan J. ;
McEvoy, Niall ;
Berner, Nina C. ;
McCloskey, David ;
Nerl, Hannah C. ;
O'Neill, Arlene ;
King, Paul J. ;
Higgins, Tom ;
Hanlon, Damien ;
Scheuschner, Nils ;
Maultzsch, Janina ;
Houben, Lothar ;
Duesberg, Georg S. ;
Donegan, John F. ;
Nicolosi, Valeria ;
Coleman, Jonathan N. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Photoelectron Spectroscopic Evidence for Overlapping Redox Reactions for SnO2 Electrodes in Lithium-Ion Batteries [J].
Bohme, Solveig ;
Philippe, Bertrand ;
Edstrom, Kristina ;
Nyholm, Leif .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (09) :4924-4936
[6]   Liquid phase exfoliation of MoO2 nanosheets for lithium ion battery applications [J].
Boland, John B. ;
Harvey, Andrew ;
Tian, Ruiyuan ;
Hanlon, Damien ;
Vega-Mayoral, Victor ;
Szydlowska, Beata ;
Griffin, Aideen ;
Stimpel-Lindner, Tanja ;
Jaskaniec, Sonia ;
Nicolosi, Valeria ;
Duesberg, Georg ;
Coleman, Jonathan N. .
NANOSCALE ADVANCES, 2019, 1 (04) :1560-1570
[7]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[8]   Germanium sulfide(II and IV) nanoparticles for enhanced performance of lithium ion batteries [J].
Cho, Yong Jae ;
Im, Hyung Soon ;
Myung, Yoon ;
Kim, Chang Hyun ;
Kim, Han Sung ;
Back, Seung Hyuk ;
Lim, Young Rok ;
Jung, Chan Su ;
Jang, Dong Myung ;
Park, Jeunghee ;
Cha, Eun Hee ;
Choo, Sung Ho ;
Song, Min Seob ;
Cho, Won Il .
CHEMICAL COMMUNICATIONS, 2013, 49 (41) :4661-4663
[9]   Permeability of polymer/clay nanocomposites: A review [J].
Choudalakis, G. ;
Gotsis, A. D. .
EUROPEAN POLYMER JOURNAL, 2009, 45 (04) :967-984
[10]   Developing models to fit capacity-rate data in battery systems [J].
Coleman, Jonathan N. ;
Tian, Ruiyuan .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 :1-6