Reactively sintered B4C-TiB2 composites: Effects of nanolayer films and secondary phase size on mechanical and fracture properties

被引:2
|
作者
Lide, H. [1 ]
Ageh, V. [1 ]
Smith, J. D. [1 ]
Rodriguez, J. [1 ]
Faireson, E. J. [2 ]
Scharf, T. W. [1 ,3 ]
机构
[1] Univ North Texas, Mat Sci & Engn & Adv Mat & Mfg Proc Inst AMMPI, Denton, TX 76203 USA
[2] Western Illinois Univ, Quad City Mfg Lab, Rock Isl, IL 61299 USA
[3] Armor Mech Branch, Weap & Mat Res Directorate, CCDC Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
关键词
Reactive spark plasma sintering; Grain boundary; nanolayer films; Boron carbide; titanium diboride; Fracture toughness; Flexural strength; Electron microscopy; BORON; TOUGHNESS; MICROSTRUCTURE; AMORPHIZATION; CERAMICS; BEHAVIOR; FAILURE;
D O I
10.1016/j.mtla.2022.101607
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High theoretical density ( > 99%) B4C-TiB2 composites containing either well dispersed, fine TiB2 or coarser ag-glomerated TiB2 were processed by spark plasma sintering in argon or reactive nitrogen environments. Two types of nanoscopic grain boundary films during reactive sintering were determined with STEM, EFTEM and EELS, namely amorphous titanium oxynitride and hexagonal boron nitride that provide weak interphase bound-aries as preferential paths for crack propagation resulting in increased fracture toughness up to 9.4 MPa root m for the coarser agglomerated TiB2 composites. Conversely, the fine TiB2 composite is beneficial for increasing the flexural strength up to 460 MPa. The strengthening and toughening mechanisms responsible for the tradeoff in properties were determined with microscopy of the fracture surfaces.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Processing, microstructure, and mechanical properties of B4C-TiB2 particulate sintered composites.: II.: Fracture and mechanical properties
    Skorokhod, VV
    Krstic, VD
    POWDER METALLURGY AND METAL CERAMICS, 2000, 39 (9-10) : 504 - 513
  • [2] Microstructure and mechanical properties of pulsed electric current sintered B4C-TiB2 composites
    Huang, S. G.
    Vanmeensel, K.
    Malek, O. J. A.
    Van der Biest, O.
    Vleugels, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (03): : 1302 - 1309
  • [3] Mechanical properties and deformation mechanisms of B4C-TiB2 eutectic composites
    White, Ryan M.
    Dickey, Elizabeth C.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (09) : 2043 - 2050
  • [4] Microstructure and mechanical properties of B4C-TiB2 composites reactive sintered from B4C + TiO2 precursors
    Svec, Pavol
    Caplovic, L'ubomir
    PROCESSING AND APPLICATION OF CERAMICS, 2022, 16 (04) : 358 - 366
  • [5] Reactive sintering of B4C-TiB2 composites from B4C and TiO2 precursors
    Svec, Pavol
    Gabrisova, Zuzana
    Brusilova, Alena
    PROCESSING AND APPLICATION OF CERAMICS, 2020, 14 (04) : 329 - 335
  • [6] Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C-TiB2 composites
    Liu, Zetan
    Deng, Xiangong
    Li, Jiamao
    Sun, Yaxin
    Ran, Songlin
    CERAMICS INTERNATIONAL, 2018, 44 (17) : 21415 - 21420
  • [7] Effect of different additives on the sintering ability and the properties of B4C-TiB2 composites
    Heydari, M. Saeedi
    Baharvandi, H. R.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 51 : 61 - 69
  • [8] Processing, microstructure, and mechanical properties of B4C-TiB2 particulate sintered composites I.: Pressureless sintering and microstructure evolution
    Skorokhod, VV
    Krstic, VD
    POWDER METALLURGY AND METAL CERAMICS, 2000, 39 (7-8) : 414 - 423
  • [9] Micromechanics-based simulation of B4C-TiB2 composite fracture under tensile load
    Dai, Jingyao
    Pineda, Evan J.
    Bednarcyk, Brett A.
    Singh, Jogender
    Yamamoto, Namiko
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (14) : 6364 - 6378
  • [10] Processing, Microstructure, and Mechanical Properties of B4C ― TiB2 Particulate Sintered Composites. Part II. Fracture and Mechanical Properties
    Vladislav V. Skorokhod
    Powder Metallurgy and Metal Ceramics, 2000, 39 : 504 - 513