CASA-Net: A Context-Aware Correlation Convolutional Network for Scale-Adaptive Crack Detection

被引:2
作者
Bi, Xin [1 ]
Zhang, Shining [1 ]
Zhang, Yu [1 ]
Hu, Lei [1 ]
Zhang, Wei [1 ]
Niu, Wenjing [1 ]
Yuan, Ye [2 ]
Wang, Guoren [2 ]
机构
[1] Northeastern Univ, Minist Educ Safe Min Deep Met Mines, Key Lab, Shenyang, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
基金
中国国家自然科学基金;
关键词
object detection; context-aware feature correlation; scale-adaptive crack detection;
D O I
10.1145/3511808.3557252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Surface cracks in infrastructure are a key indicator of structural safety and degradation. Visual-based crack detection is a critical task for the enormous application demands of infrastructure industries. Convolution operations have been widely deployed due to the strong feature learning abilities. However, global feature dependencies of multi-scale cracks are ignored due to the limited receptive field.In addition, the detection of cracks with low contrast suffers a serious performance loss.Therefore, to address the scale-adaptive crack detection problem, we propose a context-aware correlation convolutional network for scale-adaptive crack detection named CASA-Net. CASA-Net is capable of extracting multi-scale crack features for distinguishing between cracks and surface backgrounds, and evaluating feature correlations to capture global contexts. CASA-Net is composed of the multi-scale distinguishing feature extraction (MDFE) module and the context-aware feature correlation (CAFC) module. Specifically, the MDFE module consists of multiple cascaded convolutional layers and distinguishing feature extraction layers (DFLayers). The CAFC module consists of a mapping block and cascaded correlators to capture the context-aware features for long-range interactions. The performance of CASA-Net is evaluated on a benchmark crack dataset. The experimental results indicate that CASA-Net outperforms rival methods by achieving an F1-Score of 0.65 and an AP(50) of 63.9%.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 46 条
  • [1] Global Road Damage Detection: State-of-the-art Solutions
    Arya, Deeksha
    Maeda, Hiroya
    Ghosh, Sanjay Kumar
    Toshniwal, Durga
    Omata, Hiroshi
    Kashiyama, Takehiro
    Sekimoto, Yoshihide
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5533 - 5539
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [3] Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
  • [4] An Effective Hybrid Atrous Convolutional Network for Pixel-Level Crack Detection
    Chen, Hanshen
    Lin, Huiping
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [5] Pavement crack detection and recognition using the architecture of segNet
    Chen, Tingyang
    Cai, Zhenhua
    Zhao, Xi
    Chen, Chen
    Liang, Xufeng
    Zou, Tierui
    Wang, Pan
    [J]. JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2020, 18 (18)
  • [6] Deformable Convolutional Networks
    Dai, Jifeng
    Qi, Haozhi
    Xiong, Yuwen
    Li, Yi
    Zhang, Guodong
    Hu, Han
    Wei, Yichen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 764 - 773
  • [7] ECO: Efficient Convolution Operators for Tracking
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6931 - 6939
  • [8] Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network
    Deng, Jianghua
    Lu, Ye
    Lee, Vincent Cheng-Siong
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2020, 35 (04) : 373 - 388
  • [9] Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
  • [10] CenterNet: Keypoint Triplets for Object Detection
    Duan, Kaiwen
    Bai, Song
    Xie, Lingxi
    Qi, Honggang
    Huang, Qingming
    Tian, Qi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6568 - 6577