Supersymmetric Ruijs']jsenaars-Schneider Model

被引:17
|
作者
Blondeau-Fournier, O. [1 ]
Desrosiers, P. [1 ,2 ]
Mathieu, P. [1 ]
机构
[1] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ G1V 0A6, Canada
[2] CRIUSMQ, Quebec City, PQ G1J 2G3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MANY-BODY PROBLEM; JACK POLYNOMIALS; CALOGERO; SYSTEMS;
D O I
10.1103/PhysRevLett.114.121602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An integrable supersymmetric generalization of the trigonometric Ruijsenaars-Schneider model is presented whose symmetry algebra includes the super Poincare algebra. Moreover, its Hamiltonian is shown to be diagonalized by the recently introduced Macdonald superpolynomials. Somewhat surprisingly, the consistency of the scalar product forces the discreteness of the Hilbert space.
引用
收藏
页数:5
相关论文
共 25 条
  • [1] On N=2 supersymmetric Ruijs']jsenaars-Schneider models
    Krivonos, Sergey
    Lechtenfeld, Olaf
    PHYSICS LETTERS B, 2020, 807
  • [2] On the superintegrability of the rational Ruijs']jsenaars-Schneider model
    Ayadi, V.
    Feher, L.
    PHYSICS LETTERS A, 2010, 374 (19-20) : 1913 - 1916
  • [3] Cherednik Operators and Ruijs']jsenaars-Schneider Model at Infinity
    Nazarov, Maxim
    Sklyanin, Evgeny
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (08) : 2266 - 2294
  • [4] Hyperbolic Spin Ruijs']jsenaars-Schneider Model from Poisson Reduction
    Arutyunov, Gleb E.
    Olivucci, Enrico
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 309 (01) : 31 - 45
  • [5] Quantum trace formulae for the integrals of the hyperbolic Ruijs']jsenaars-Schneider model
    Arutyunov, Gleb
    Klabbers, Rob
    Olivucci, Enrico
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [6] Multiplicative quiver varieties and generalised Ruijs']jsenaars-Schneider models
    Chalykh, Oleg
    Fairon, Maxime
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 413 - 437
  • [7] Supersymmetric extension of qKZ-Ruijs']jsenaars correspondence
    Grekov, A.
    Zabrodin, A.
    Zotov, A.
    NUCLEAR PHYSICS B, 2019, 939 : 174 - 190
  • [8] The full phase space of a model in the Calogero-Ruijs']jsenaars family
    Feher, L.
    Gorbe, T. F.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 139 - 149
  • [9] The action-angle dual of an integrable Hamiltonian system of Ruijs']jsenaars-Schneider-van Diejen type
    Feher, L.
    Marshall, I.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (31)
  • [10] Higher Order Deformed Elliptic Ruijs']jsenaars Operators
    Hallnas, Martin
    Langmann, Edwin
    Noumi, Masatoshi
    Rosengren, Hjalmar
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 392 (02) : 659 - 689