Aerosol tracking using lidar-based atmospheric profiling and Bayesian estimation

被引:8
|
作者
Elbakary, Mohamed I. [1 ]
Abdelghaffar, Hossam M. [2 ,4 ]
Afrifa, Kwasi [1 ]
Rakha, Hesham A. [2 ]
Cetin, Mecit [3 ]
Iftekharuddin, Khan M. [1 ]
机构
[1] Old Dominion Univ, Dept Elect & Comp Engn, 231 Kaufman Hall, Norfolk, VA 23529 USA
[2] Virginia Tech, Ctr Sustainable Mobil, Transportat Inst, Blacksburg, VA 24060 USA
[3] Old Dominion Univ, Dept Civil Engn, Norfolk, VA 23529 USA
[4] Mansoura Univ, Engn Fac, Dept Comp Engn & Syst, Mansoura, Egypt
关键词
Air pollution; Lidar; Laser-based systems; Soot pollution; INVERSION;
D O I
10.1016/j.optlastec.2020.106248
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Soot aerosol in atmosphere is one of deadliest forms of air pollution and is a major cause for health problems according to EPA. Compact light detection and ranging (lidar) systems can be used to obtain aerosol profile measurements by identifying aerosol scattering ratios as function of altitude. Aerosol ratio parameters are known to vary with aerosol type, size, and shape. This work employs a ground-based lidar system to detect the source of soot emissions in atmosphere in a wide area around the campus of Old Dominion University (ODU), Norfolk, VA. Different aerosol scattering ratio parameters including lidar and color ratios are obtained from collected lidar data around the campus and these ratios are analyzed for detection and quantification of soot aerosol. A Bayesian estimation algorithm was chosen, after extensive study, to determine the source of the soot in the measurements by tracking the pollution concentration. Results of the analysis using lidar data show that the source of soot pollution is a nearby major Hampton Blvd. Hampton Blvd. is a major arterial with traffic signals through the ODU campus where diesel trucks frequently travel to serve Port of Virginia, which ranks as the third largest container port on the East Coast.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] LIDAR-BASED GAIT ANALYSIS IN PEOPLE TRACKING AND 4D VISUALIZATION
    Benedek, Csaba
    Nagy, Balazs
    Galai, Bence
    Janko, Zsolt
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1138 - 1142
  • [22] LiDAR-based estimation of bounding box coordinates using Gaussian process regression and particle swarm optimization
    Vinodha, K.
    Gopi, E. S.
    Agnibhoj, Tushar
    BIOMIMETIC INTELLIGENCE AND ROBOTICS, 2024, 4 (01):
  • [23] LIDAR-Based Relative Navigation for Unknown Space Objects Using 3D Extended Target Tracking
    Alexander Perruci
    David D. Lee
    The Journal of the Astronautical Sciences, 72 (3)
  • [24] Using LIDAR-based DEM to orthorectify Ikonos panchromatic images
    Elaksher, Ahmed F.
    OPTICS AND LASERS IN ENGINEERING, 2009, 47 (06) : 629 - 635
  • [25] Aerial LiDAR-based 3D Object Detection and Tracking for Traffic Monitoring
    Cherif, Baya
    Ghazzai, Hakim
    Alsharoa, Ahmad
    Besbes, Hichem
    Massoud, Yehia
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [26] LiDAR-based 3D Multi-object Tracking for Unmanned Vehicles
    Xiong Z.-K.
    Cheng X.-Q.
    Wu Y.-D.
    Zuo Z.-Q.
    Liu J.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2073 - 2083
  • [27] Atmospheric aerosol particle size distribution from Lidar data based on the lognormal distribution mode
    Shi, Yuchen
    Liu, Wenqing
    Dong, Yunsheng
    Zhao, Xuesong
    Xiang, Yan
    Zhang, Tianshu
    Lv, Lihui
    HELIYON, 2022, 8 (08)
  • [28] LiDAR-Based Global Localization Using Histogram of Orientations of Principal Normals
    Luo, Lun
    Cao, Si-Yuan
    Sheng, Zehua
    Shen, Hui-Liang
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (03): : 771 - 782
  • [29] Automation of LiDAR-based hydrologic feature extraction workflows using GIS
    Borlongan, Noel Jerome B.
    de la Cruz, Roel M.
    Olfindo, Nestor T., Jr.
    Perez, Anjillyn Mae C.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VII, 2016, 10005
  • [30] Wind turbine load validation using lidar-based wind retrievals
    Dimitrov, Nikolay
    Borraccino, Antoine
    Pena, Alfredo
    Natarajan, Anand
    Mann, Jakob
    WIND ENERGY, 2019, 22 (11) : 1512 - 1533