Aerosol tracking using lidar-based atmospheric profiling and Bayesian estimation

被引:9
作者
Elbakary, Mohamed I. [1 ]
Abdelghaffar, Hossam M. [2 ,4 ]
Afrifa, Kwasi [1 ]
Rakha, Hesham A. [2 ]
Cetin, Mecit [3 ]
Iftekharuddin, Khan M. [1 ]
机构
[1] Old Dominion Univ, Dept Elect & Comp Engn, 231 Kaufman Hall, Norfolk, VA 23529 USA
[2] Virginia Tech, Ctr Sustainable Mobil, Transportat Inst, Blacksburg, VA 24060 USA
[3] Old Dominion Univ, Dept Civil Engn, Norfolk, VA 23529 USA
[4] Mansoura Univ, Engn Fac, Dept Comp Engn & Syst, Mansoura, Egypt
关键词
Air pollution; Lidar; Laser-based systems; Soot pollution; INVERSION;
D O I
10.1016/j.optlastec.2020.106248
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Soot aerosol in atmosphere is one of deadliest forms of air pollution and is a major cause for health problems according to EPA. Compact light detection and ranging (lidar) systems can be used to obtain aerosol profile measurements by identifying aerosol scattering ratios as function of altitude. Aerosol ratio parameters are known to vary with aerosol type, size, and shape. This work employs a ground-based lidar system to detect the source of soot emissions in atmosphere in a wide area around the campus of Old Dominion University (ODU), Norfolk, VA. Different aerosol scattering ratio parameters including lidar and color ratios are obtained from collected lidar data around the campus and these ratios are analyzed for detection and quantification of soot aerosol. A Bayesian estimation algorithm was chosen, after extensive study, to determine the source of the soot in the measurements by tracking the pollution concentration. Results of the analysis using lidar data show that the source of soot pollution is a nearby major Hampton Blvd. Hampton Blvd. is a major arterial with traffic signals through the ODU campus where diesel trucks frequently travel to serve Port of Virginia, which ranks as the third largest container port on the East Coast.
引用
收藏
页数:10
相关论文
共 27 条
[1]  
Abdelghaffar H., 2015, AIAA GUID NAV CONTR, DOI [10.2514/6.2015-1071, DOI 10.2514/6.2015-1071]
[2]   Comparison of Three Approaches to Atmospheric Source Localization [J].
Abdelghaffar, Hossam M. ;
Woolsey, Craig A. ;
Rakha, Hesham A. .
JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2017, 14 (01) :40-52
[3]   Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements [J].
Amiridis, V. ;
Balis, D. S. ;
Giannakaki, E. ;
Stohl, A. ;
Kazadzis, S. ;
Koukouli, M. E. ;
Zanis, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (07) :2431-2440
[4]   Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples [J].
Burton, S. P. ;
Ferrare, R. A. ;
Hostetler, C. A. ;
Hair, J. W. ;
Rogers, R. R. ;
Obland, M. D. ;
Butler, C. F. ;
Cook, A. L. ;
Harper, D. B. ;
Froyd, K. D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (01) :73-98
[5]   Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations [J].
Cattrall, C ;
Reagan, J ;
Thome, K ;
Dubovik, O .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-13
[6]   LIDAR - A NEW ATMOSPHERIC PROBE [J].
COLLIS, RTH .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1966, 92 (392) :220-&
[7]   Plume mapping via hidden Markov methods [J].
Farrell, JA ;
Pang, S ;
Li, W .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (06) :850-863
[8]  
Fernald F. G., 1972, Journal of Applied Meteorology, V11, P482, DOI 10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO
[9]  
2
[10]   ANALYSIS OF ATMOSPHERIC LIDAR OBSERVATIONS - SOME COMMENTS [J].
FERNALD, FG .
APPLIED OPTICS, 1984, 23 (05) :652-653