Self-folding devices and materials for biomedical applications

被引:238
作者
Randall, Christina L. [3 ]
Gultepe, Evin [1 ]
Gracias, David H. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
MINIMALLY INVASIVE SURGERY; TISSUE ENGINEERING SCAFFOLDS; DRUG-DELIVERY; ACTUATED MICROGRIPPERS; MECHANICAL-PROPERTIES; CELL ENCAPSULATION; IN-VIVO; CONTAINERS; MICROSTRUCTURES; FABRICATION;
D O I
10.1016/j.tibtech.2011.06.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Because the native cellular environment is 3D, there is a need to extend planar, micro- and nanostructured biomedical devices to the third dimension. Self-folding methods can extend the precision of planar lithographic patterning into the third dimension and create reconfigurable structures that fold or unfold in response to specific environmental cues. Here, we review the use of hinge-based self-folding methods in the creation of functional 3D biomedical devices including precisely patterned nano- to centimeter scale polyhedral containers, scaffolds for cell culture and reconfigurable surgical tools such as grippers that respond autonomously to specific chemicals.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 82 条
[21]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689
[22]   New dimensions in tumor immunology: what does 3D culture reveal? [J].
Feder-Mengus, Chantal ;
Ghosh, Sourabh ;
Reschner, Anca ;
Martin, Ivan ;
Spagnoli, Giulio C. .
TRENDS IN MOLECULAR MEDICINE, 2008, 14 (08) :333-340
[23]   Enabling Cargo-Carrying Bacteria via Surface Attachment and Triggered Release [J].
Fernandes, Rohan ;
Zuniga, Mary ;
Sassine, Fritz R. ;
Karakoy, Mert ;
Gracias, David H. .
SMALL, 2011, 7 (05) :588-592
[24]   Toward a miniaturized mechanical surgeon [J].
Fernandes, Rohan ;
Gracias, David H. .
MATERIALS TODAY, 2009, 12 (10) :14-20
[25]  
Feynman R. P., 1992, J MICROELECTROMECHAN, V1, P60, DOI DOI 10.1109/84.128057
[26]   Hierarchical self-assembly of complex polyhedral microcontainers [J].
Filipiak, David J. ;
Azam, Anum ;
Leong, Timothy G. ;
Gracias, David H. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (07)
[27]   Engineering tumors with 3D scaffolds [J].
Fischbach, Claudia ;
Chen, Ruth ;
Matsumoto, Takuya ;
Schmelzle, Tobias ;
Brugge, Joan S. ;
Polverini, Peter J. ;
Mooney, David J. .
NATURE METHODS, 2007, 4 (10) :855-860
[28]   Multilayer micromolding of degradable polymer tissue engineering scaffolds [J].
Gallego, Daniel ;
Ferrell, Nicholas ;
Sun, Yang ;
Hansford, Derek J. .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2008, 28 (03) :353-358
[29]   Mechanics of receptor-mediated endocytosis [J].
Gao, HJ ;
Shi, WD ;
Freund, LB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) :9469-9474
[30]   Self-assembled three dimensional radio frequency (RF) shielded containers for cell encapsulation [J].
Gimi, B ;
Leong, T ;
Gu, ZY ;
Yang, M ;
Artemov, D ;
Bhujwalla, ZM ;
Gracias, DH .
BIOMEDICAL MICRODEVICES, 2005, 7 (04) :341-345