A novel mobile robot navigation method based on deep reinforcement learning

被引:32
|
作者
Quan, Hao [1 ,2 ]
Li, Yansheng [1 ,2 ]
Zhang, Yi [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Res Ctr Intelligent Syst & Robot, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Adv Mfg Engn, Chongqing, Peoples R China
来源
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS | 2020年 / 17卷 / 03期
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; robot exploration; recurrent neural network; DDQN;
D O I
10.1177/1729881420921672
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
At present, the application of mobile robots is more and more extensive, and the movement of mobile robots cannot be separated from effective navigation, especially path exploration. Aiming at navigation problems, this article proposes a method based on deep reinforcement learning and recurrent neural network, which combines double net and recurrent neural network modules with reinforcement learning ideas. At the same time, this article designed the corresponding parameter function to improve the performance of the model. In order to test the effectiveness of this method, based on the grid map model, this paper trains in a two-dimensional simulation environment, a three-dimensional TurtleBot simulation environment, and a physical robot environment, and obtains relevant data for peer-to-peer analysis. The experimental results show that the proposed algorithm has a good improvement in path finding efficiency and path length.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Navigation method for mobile robot based on hierarchical deep reinforcement learning
    Wang T.
    Li A.
    Song H.-L.
    Liu W.
    Wang M.-H.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (11): : 2799 - 2807
  • [2] Mobile Robot Navigation based on Deep Reinforcement Learning
    Ruan, Xiaogang
    Ren, Dingqi
    Zhu, Xiaoqing
    Huang, Jing
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 6174 - 6178
  • [3] A Behavior-Based Mobile Robot Navigation Method with Deep Reinforcement Learning
    Li, Juncheng
    Ran, Maopeng
    Wang, Han
    Xie, Lihua
    UNMANNED SYSTEMS, 2021, 9 (03) : 201 - 209
  • [4] Deep Reinforcement Learning Based Mobile Robot Navigation: A Review
    Zhu, Kai
    Zhang, Tao
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 674 - 691
  • [5] Sensor-based Mobile Robot Navigation via Deep Reinforcement Learning
    Han, Seungho-Ho
    Choi, Ho-Jin
    Benz, Philipp
    Loaiciga, Jorge
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 147 - 154
  • [6] Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning
    Ou, Yang
    Cai, Yiyi
    Sun, Youming
    Qin, Tuanfa
    SENSORS, 2024, 24 (12)
  • [7] CBNAV: Costmap Based Approach to Deep Reinforcement Learning Mobile Robot Navigation
    Tomasi Junior, Darci Luiz
    Todt, Eduardo
    2021 LATIN AMERICAN ROBOTICS SYMPOSIUM / 2021 BRAZILIAN SYMPOSIUM ON ROBOTICS / 2021 WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2021), 2021, : 324 - 329
  • [8] A Brief Survey: Deep Reinforcement Learning in Mobile Robot Navigation
    Jiang, Haoge
    Wang, Han
    Yau, Wei-Yun
    Wan, Kong-Wah
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 592 - 597
  • [9] Continuous Control with Deep Reinforcement Learning for Mobile Robot Navigation
    Xiang, Jiaqi
    Li, Qingdong
    Dong, Xiwang
    Ren, Zhang
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1501 - 1506
  • [10] Deep Reinforcement Learning of Map-Based Obstacle Avoidance for Mobile Robot Navigation
    Chen G.
    Pan L.
    Chen Y.
    Xu P.
    Wang Z.
    Wu P.
    Ji J.
    Chen X.
    SN Computer Science, 2021, 2 (6)