Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques

被引:15
|
作者
Awadallah, Mohamed A. [1 ]
机构
[1] Zagazig Univ, Dept Elect Power & Machines, Coll Engn, Zagazig 44111, Egypt
关键词
parameter estimation; optimization; three-phase induction machines; particle swarm; genetic algorithms;
D O I
10.1080/15325000801911393
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an optimization-based methodology to estimate the six equivalent circuit parameters of three-phase induction machines from its nameplate data for steady-state analysis. The optimization problem is based on minimizing the normalized square error between the computed performance of the equivalent circuit and that supplied by the manufacturer through the nameplate data. The problem is solved by using two routines that belong to the evolutionary computation family, namely, the particle swarm optimization (PSO) and the genetic algorithm (GA). A comparison between the functioning of the two routines is conducted. The motor performance computed through the PSO/GA parameters is compared to that computed by classical parameters obtained via machine testing, as well as the measured performance. Results show the superiority of the PSO/GA parameter set over the classical one, besides the distinct gain of eliminating the need to carry out lab testing in order to obtain the machine parameters.
引用
收藏
页码:801 / 814
页数:14
相关论文
共 50 条
  • [41] Parametric Estimation From Empirical Data Using Particle Swarm Optimization Method for Different Magnetorheological Damper Models
    Muthalif, Asan G. A.
    Razali, M. Khusyaie M.
    Nordin, N. H. Diyana
    Hamid, Syamsul Bahrin Abdul
    IEEE ACCESS, 2021, 9 (09): : 72602 - 72613
  • [42] On the Estimation of Logistic Models with Banking Data Using Particle Swarm Optimization
    Ansori, Moch. Fandi
    Sidarto, Kuntjoro Adji
    Sumarti, Novriana
    Gunadi, Iman
    ALGORITHMS, 2024, 17 (11)
  • [43] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [44] Induction Machine Parameter Range Constraints in Genetic Algorithm Based Efficiency Estimation Techniques
    Bijan, Mahmud Ghasemi
    Al-Badri, Maher
    Pillay, Pragasen
    Angers, Pierre
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (05) : 4186 - 4197
  • [45] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    ENERGIES, 2017, 10 (08)
  • [46] Estimation of the parameters of the servo drive system using Particle Swarm Optimization algorithm
    Zhu, Helin
    Choi, Jae Hyuk
    Park, Sang Uk
    Lee, Jusuk
    Lee, Hyong Gun
    Mok, Hyung Soo
    2018 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-NIIGATA 2018 -ECCE ASIA), 2018, : 1336 - 1340
  • [47] Induction Machine Parameter Range Constraints in Genetic Algorithm Based Efficiency Estimation Techniques
    Ghasemi-Bijan, Mahmud
    Al-Badri, Maher
    Pillay, Pragasen
    Angers, Pierre
    2017 IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE (IEMDC), 2017,
  • [48] Quality-of-Experience Parameter Estimation for Multisensorial Media using Particle Swarm Optimization
    Jalal, Lana
    Popescu, Vlad
    Murroni, Maurizio
    2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 965 - 970
  • [49] Inverse Lithography Source Optimization via Particle Swarm Optimization and Genetic Combined Algorithm
    Sun, Haifeng
    Zhang, Qingyan
    Jin, Chuan
    Li, Yanli
    Tang, Yan
    Wang, Jian
    Hu, Song
    Liu, Junbo
    IEEE PHOTONICS JOURNAL, 2023, 15 (02):
  • [50] Joint optimization of preventive maintenance and spare parts inventory using genetic algorithms and particle swarm optimization algorithm
    Samal N.K.
    Pratihar D.K.
    International Journal of System Assurance Engineering and Management, 2015, 6 (3) : 248 - 258