Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques

被引:15
|
作者
Awadallah, Mohamed A. [1 ]
机构
[1] Zagazig Univ, Dept Elect Power & Machines, Coll Engn, Zagazig 44111, Egypt
关键词
parameter estimation; optimization; three-phase induction machines; particle swarm; genetic algorithms;
D O I
10.1080/15325000801911393
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an optimization-based methodology to estimate the six equivalent circuit parameters of three-phase induction machines from its nameplate data for steady-state analysis. The optimization problem is based on minimizing the normalized square error between the computed performance of the equivalent circuit and that supplied by the manufacturer through the nameplate data. The problem is solved by using two routines that belong to the evolutionary computation family, namely, the particle swarm optimization (PSO) and the genetic algorithm (GA). A comparison between the functioning of the two routines is conducted. The motor performance computed through the PSO/GA parameters is compared to that computed by classical parameters obtained via machine testing, as well as the measured performance. Results show the superiority of the PSO/GA parameter set over the classical one, besides the distinct gain of eliminating the need to carry out lab testing in order to obtain the machine parameters.
引用
收藏
页码:801 / 814
页数:14
相关论文
共 50 条
  • [31] Parameter Estimation for One-Dimensional Chaotic Systems by Guaranteed Algorithm and Particle Swarm Optimization
    Sheludko, Anton S.
    IFAC PAPERSONLINE, 2018, 51 (32): : 337 - 342
  • [32] Parameter Estimation of Complex Functions Based on Quantum-behaved Particle Swarm Optimization Algorithm
    Xu, Min
    Xu, Wenbo
    DCABES 2008 PROCEEDINGS, VOLS I AND II, 2008, : 591 - +
  • [33] Enhanced Particle Swarm Optimization Algorithm for Sea Clutter Parameter Estimation in Generalized Pareto Distribution
    Yang, Bin
    Li, Qing
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [34] Induction Motor Parameter Estimation Using Sparse Grid Optimization Algorithm
    Duan, Fang
    Zivanovic, Rastko
    Al-Sarawi, Said
    Mba, David
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (04) : 1453 - 1461
  • [35] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [36] Parameter Estimation of Bioprocesses via Parallel Particle Swarm Optimization
    Sendrescu, Dorin
    Petre, Emil
    Bobasu, Eugen
    Roman, Monica
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 336 - 341
  • [37] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [38] Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization
    Xu, Xing
    Li, Yuanxiang
    Wu, Yu
    Du, Xin
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 679 - 686
  • [39] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) : 1785 - 1799
  • [40] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03): : 102 - 111