Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques

被引:15
|
作者
Awadallah, Mohamed A. [1 ]
机构
[1] Zagazig Univ, Dept Elect Power & Machines, Coll Engn, Zagazig 44111, Egypt
关键词
parameter estimation; optimization; three-phase induction machines; particle swarm; genetic algorithms;
D O I
10.1080/15325000801911393
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an optimization-based methodology to estimate the six equivalent circuit parameters of three-phase induction machines from its nameplate data for steady-state analysis. The optimization problem is based on minimizing the normalized square error between the computed performance of the equivalent circuit and that supplied by the manufacturer through the nameplate data. The problem is solved by using two routines that belong to the evolutionary computation family, namely, the particle swarm optimization (PSO) and the genetic algorithm (GA). A comparison between the functioning of the two routines is conducted. The motor performance computed through the PSO/GA parameters is compared to that computed by classical parameters obtained via machine testing, as well as the measured performance. Results show the superiority of the PSO/GA parameter set over the classical one, besides the distinct gain of eliminating the need to carry out lab testing in order to obtain the machine parameters.
引用
收藏
页码:801 / 814
页数:14
相关论文
共 50 条
  • [1] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [2] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312
  • [3] A Comparison of Continuous Genetic Algorithm and Particle Swarm Optimization in Parameter Estimation of Gompertz Growth Model
    Windarto
    Eridani
    Purwati, Utami Dyah
    PROCEEDINGS OF THE SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH) 2018, 2019, 2084
  • [4] Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization
    Ojeda, Daniel R. G.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2018, 81 : 1 - 10
  • [5] Reliability and maintainability optimization of load haul dump machines using genetic algorithm and particle swarm optimization
    Saini, Monika
    Sinwar, Deepak
    Swarith, Alapati Manas
    Kumar, Ashish
    JOURNAL OF QUALITY IN MAINTENANCE ENGINEERING, 2023, 29 (02) : 356 - 376
  • [6] An Efficient Hybrid Algorithm with Particle Swarm Optimization and Nelder-Mead Algorithm for Parameter Estimation of Nonlinear Regression Modeling
    Yonar, Aynur
    Yonar, Harun
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2022, 35 (02): : 716 - 729
  • [7] Comparison of the parameter estimation methods of surge arresters using modified particle swarm optimization algorithm
    Nafar, M.
    Gharehpetian, G. B.
    Niknam, T.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2012, 22 (08): : 1146 - 1160
  • [8] A Novel Genetic Algorithm and Particle Swarm Optimization for Data Clustering
    Gandamalla, Malini Devi
    Maddala, Seetha
    Sunitha, K. V. N.
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 2, INDIA 2016, 2016, 434 : 199 - 208
  • [9] The Induction Motor Parameter Estimation Using Genetic Algorithm
    Fortes, M. Z.
    Ferreira, V. H.
    Coelho, A. P. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1273 - 1278
  • [10] USING MODIFIED FUZZY PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION OF SURGE ARRESTERS MODELS
    Nafar, Mehdi
    Gharehpetian, Gevork B.
    Niknam, Taher
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (1B): : 567 - 581