Complementary variational principles with fractional derivatives

被引:6
|
作者
Atanackovic, Teodor M. [2 ]
Janev, Marko [1 ]
Pilipovic, Stevan [3 ]
Zorica, Dusan [1 ]
机构
[1] Serbian Acad Arts & Sci, Math Inst, Beograd 11000, Serbia
[2] Univ Novi Sad, Fac Tech Sci, Dept Mech, Novi Sad 21000, Serbia
[3] Univ Novi Sad, Dept Math, Fac Nat Sci & Math, Novi Sad 21000, Serbia
关键词
CALCULUS; EQUATIONS;
D O I
10.1007/s00707-011-0588-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Complementary variational principles for a class of fractional boundary value problems are formulated. They are used for the error estimates of solutions for a general mechanical problems, first Painlev, equation also given in the form with fractional derivatives and in the task of image regularization.
引用
收藏
页码:685 / 704
页数:20
相关论文
共 50 条
  • [41] A Factory of Fractional Derivatives
    Ortigueira, Manuel D.
    SYMMETRY-BASEL, 2024, 16 (07):
  • [42] Riesz Fractional Derivatives and Fractional Dimensional Space
    Muslih, Sami I.
    Agrawal, Om P.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (02) : 270 - 275
  • [43] Calculus of variations with fractional derivatives and fractional integrals
    Almeida, Ricardo
    Torres, Delfim F. M.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (12) : 1816 - 1820
  • [44] A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions
    Atangana, Abdon
    Secer, Aydin
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [45] Solving Non-Linear Fractional Variational Problems Using Jacobi Polynomials
    Singh, Harendra
    Pandey, Rajesh K.
    Srivastava, Hari Mohan
    MATHEMATICS, 2019, 7 (03):
  • [46] Symmetries and conserved quantities for fractional action-like Pfaffian variational problems
    Zhang, Yi
    Zhou, Yan
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 783 - 793
  • [47] Sufficient conditions for extremum of fractional variational problems
    Pattnaik, Ashapurna
    Padhan, Saroj Kumar
    Mohapatra, R. N.
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (02) : 637 - 648
  • [48] Discrete-time fractional variational problems
    Bastos, Nuno R. O.
    Ferreira, Rui A. C.
    Torres, Delfim F. M.
    SIGNAL PROCESSING, 2011, 91 (03) : 513 - 524
  • [49] Statistical analysis for stochastic systems including fractional derivatives
    Huang, Z. L.
    Jin, X. L.
    Lim, C. W.
    Wang, Y.
    NONLINEAR DYNAMICS, 2010, 59 (1-2) : 339 - 349
  • [50] Stability of fractional-order systems with Prabhakar derivatives
    Garrappa, Roberto
    Kaslik, Eva
    NONLINEAR DYNAMICS, 2020, 102 (01) : 567 - 578