Complementary variational principles with fractional derivatives

被引:6
|
作者
Atanackovic, Teodor M. [2 ]
Janev, Marko [1 ]
Pilipovic, Stevan [3 ]
Zorica, Dusan [1 ]
机构
[1] Serbian Acad Arts & Sci, Math Inst, Beograd 11000, Serbia
[2] Univ Novi Sad, Fac Tech Sci, Dept Mech, Novi Sad 21000, Serbia
[3] Univ Novi Sad, Dept Math, Fac Nat Sci & Math, Novi Sad 21000, Serbia
关键词
CALCULUS; EQUATIONS;
D O I
10.1007/s00707-011-0588-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Complementary variational principles for a class of fractional boundary value problems are formulated. They are used for the error estimates of solutions for a general mechanical problems, first Painlev, equation also given in the form with fractional derivatives and in the task of image regularization.
引用
收藏
页码:685 / 704
页数:20
相关论文
共 50 条
  • [31] Caputo and related fractional derivatives in singular systems
    Dassios, Ioannis K.
    Baleanu, Dumitru, I
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 591 - 606
  • [32] Variational principles for stochastic soliton dynamics
    Holm, Darryl D.
    Tyranowski, Tomasz M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2187):
  • [33] The General Fractional Integrals and Derivatives on a Finite Interval
    Al-Refai, Mohammed
    Luchko, Yuri
    MATHEMATICS, 2023, 11 (04)
  • [34] Internal Lagrangians of PDEs as variational principles
    Druzhkov, Kostya
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [35] Variational approach and deformed derivatives
    Weberszpil, J.
    Helayel-Neto, J. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 450 : 217 - 227
  • [36] Variational Problems with Time Delay and Higher-Order Distributed-Order Fractional Derivatives with Arbitrary Kernels
    Cruz, Fatima
    Almeida, Ricardo
    Martins, Natalia
    MATHEMATICS, 2021, 9 (14)
  • [37] Generalized KdV equation involving Riesz time-fractional derivatives: constructing and solution utilizing variational methods
    Alshenawy, R.
    Al-alwan, Ali
    Elmandouh, A. A.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 314 - 321
  • [38] Principles of fractional signal processing
    Ortigueira, Manuel D.
    DIGITAL SIGNAL PROCESSING, 2024, 149
  • [39] Fractional Backward Stochastic Differential Equations and Fractional Backward Variational Inequalities
    Maticiuc, Lucian
    Nie, Tianyang
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (01) : 337 - 395
  • [40] A spectral framework for fractional variational problems based on fractional Jacobi functions
    Zaky, M. A.
    Doha, E. H.
    Tenreiro Machado, J. A.
    APPLIED NUMERICAL MATHEMATICS, 2018, 132 : 51 - 72