Time-domain identification of One Noninteger Order Plus Time Delay models from step response measurements

被引:28
作者
Alagoz, Baris Baykant [1 ]
Tepljakov, Aleksei [2 ]
Ates, Abdullah [1 ]
Petlenkov, Eduard [2 ]
Yeroglu, Celaleddin [1 ]
机构
[1] Inonu Univ, Dept Comp Engn, Malatya, Turkey
[2] Tallinn Univ Technol, Dept Comp Syst, Tallinn, Estonia
关键词
Model identification; fractional-order systems; Mittag-Leffler (ML) function; Grunwald-Letnikov (GL) definition; PSO; CONTROLLERS;
D O I
10.1142/S1793962319410113
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Practical performances of controller design methods strongly depend on relevancy of identified models. Fractional order system models promise advantage of more accurate modeling of real systems. This study presents a discussion on utilization of two fundamental numerical solution methods of fractional calculus in identification problems of One Noninteger Order Plus Time Delay with one pole (NOPTD-I) models. The identification process is carried out by estimating parameters of a NOPTD-I type transfer function template so that the step response of the NOPTD-I model can sufficiently fit experimental step response data. In the study, step responses of NOPTD-I models are numerically calculated according to two fundamental methods, which are Mittag-Leffler (ML) function and Grunwald-Letnikov (GL) definition. Particle swarm optimization (PSO) algorithm is used to perform data fitting. Illustrative examples are presented to evaluate model parameter estimation performances of these two methods for synthetically generated noisy test data. An experimental study is conducted for modeling pitch rotor of TRMS to compare experimental performances.
引用
收藏
页数:22
相关论文
共 26 条
  • [1] A note on applications of time-domain solution of Cole permittivity models
    Alagoz, Bads Baykant
    Alisoy, Gulizar
    Alagoz, Serkan
    Alisoy, Hafiz
    [J]. OPTIK, 2017, 139 : 272 - 282
  • [2] [Anonymous], 2002, MODERN CONTROL ENG
  • [3] [Anonymous], 1999, MATH SCI ENG
  • [4] [Anonymous], 2006, FEEDBACK INSTRUMENTS
  • [5] Revisiting the Ziegler-Nichols step response method for PID control
    Åstrom, KJ
    Hågglund, T
    [J]. JOURNAL OF PROCESS CONTROL, 2004, 14 (06) : 635 - 650
  • [6] Fractional Order Control - A Tutorial
    Chen, YangQuan
    Petras, Ivo
    Xue, Dingyue
    [J]. 2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 1397 - +
  • [7] Das S., 2011, OPTICAL FIBER COMMUN, P1, DOI DOI 10.1109/ICPHM.2011.6024356
  • [8] On the selection of tuning methodology of FOPID controllers for the control of higher order processes
    Das, Saptarshi
    Saha, Suman
    Das, Shantanu
    Gupta, Amitava
    [J]. ISA TRANSACTIONS, 2011, 50 (03) : 376 - 388
  • [9] Dorcak L., 2013, INT J PURE APPL MATH, V89, P225, DOI DOI 10.12732/IJPAM.V89I2.8
  • [10] MALEK H, 2011, ASME 2011 INT DES EN, P311