Time distortion associated with smartphone addiction: Identifying smartphone addiction via a mobile application (App)

被引:246
作者
Lin, Yu-Hsuan [1 ,2 ]
Lin, Yu-Cheng [1 ,2 ]
Lee, Yang-Han [4 ]
Lin, Po-Hsien [5 ]
Lin, Sheng-Hsuan [6 ]
Chang, Li-Ren [7 ]
Tseng, Hsien-Wei [4 ,8 ]
Yen, Liang-Yu [4 ]
Yang, Cheryl C. H. [1 ,2 ,3 ]
Kuo, Terry B. J. [1 ,2 ,3 ,9 ]
机构
[1] Natl Yang Ming Univ, Inst Brain Sci, Taipei 11221, Taiwan
[2] Natl Yang Ming Univ, Sleep Res Ctr, Taipei 11221, Taiwan
[3] Natl Yang Ming Univ, Brain Res Ctr, Taipei 11221, Taiwan
[4] Tamkang Univ Hosp, Dept & Grad Sch Elect Engn, New Taipei City, Taiwan
[5] Koo Fdn Sun Yat Sen Canc Ctr, Dept Psychiat, New Taipei City, Taiwan
[6] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[7] Natl Taiwan Univ, Coll Med, Dept Psychiat, Taipei 10764, Taiwan
[8] De Lin Inst Technol, Dept Comp & Commun Engn, New Taipei City, Taiwan
[9] Natl Cent Univ, Inst Translat & Interdisciplinary Med, Taoyuan, Taiwan
关键词
Smartphone addiction; Internet addiction; Mobile application; Empirical mode decomposition; PROPOSED DIAGNOSTIC-CRITERIA; INTERNET ADDICTION; NOVICE;
D O I
10.1016/j.jpsychires.2015.04.003
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background: Global smartphone penetration has brought about unprecedented addictive behaviors. Aims: We report a proposed diagnostic criteria and the designing of a mobile application (App) to identify smartphone addiction. Method: We used a novel empirical mode decomposition (EMD) to delineate the trend in smartphone use over one month. Results: The daily use count and the trend of this frequency are associated with smartphone addiction. We quantify excessive use by daily use duration and frequency, as well as the relationship between the tolerance symptoms and the trend for the median duration of a use epoch. The psychiatrists' assisted self-reporting use time is significant lower than and the recorded total smartphone use time via the App and the degree of underestimation was positively correlated with actual smartphone use. Conclusions: Our study suggests the identification of smartphone addiction by diagnostic interview and via the App-generated parameters with EMD analysis. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:139 / 145
页数:7
相关论文
共 17 条
[1]  
APA, 2013, Diagnostic and statistical manual of mental disorders, V5th
[2]   Issues for DSM-V: Internet addiction [J].
Block, Jerald J. .
AMERICAN JOURNAL OF PSYCHIATRY, 2008, 165 (03) :306-307
[3]  
Greenfield D N, 1999, Cyberpsychol Behav, V2, P403, DOI 10.1089/cpb.1999.2.403
[4]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[5]   Distracted Driving and Risk of Road Crashes among Novice and Experienced Drivers [J].
Klauer, Sheila G. ;
Guo, Feng ;
Simons-Morton, Bruce G. ;
Ouimet, Marie Claude ;
Lee, Suzanne E. ;
Dingus, Thomas A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (01) :54-59
[6]   Proposed diagnostic criteria of Internet addiction for adolescents [J].
Ko, CH ;
Yen, JY ;
Chen, CC ;
Chen, SH ;
Yen, CF .
JOURNAL OF NERVOUS AND MENTAL DISEASE, 2005, 193 (11) :728-733
[7]   Factors predictive for incidence and remission of Internet addiction in young adolescents: A prospective study [J].
Ko, Chih-Hung ;
Yen, Ju-Yu ;
Yen, Cheng-Fang ;
Lin, Huang-Chi ;
Yang, Ming-Jen .
CYBERPSYCHOLOGY & BEHAVIOR, 2007, 10 (04) :545-551
[8]   Proposed diagnostic criteria and the screening and diagnosing tool of Internet addiction in college students [J].
Ko, Chih-Hung ;
Yen, Ju-Yu ;
Chen, Sue-Huei ;
Yang, Ming-Jen ;
Lin, Huang-Chi ;
Yen, Cheng-Fang .
COMPREHENSIVE PSYCHIATRY, 2009, 50 (04) :378-384
[9]   The SAMS: Smartphone Addiction Management System and Verification [J].
Lee, Heyoung ;
Ahn, Heejune ;
Choi, Samwook ;
Choi, Wanbok .
JOURNAL OF MEDICAL SYSTEMS, 2014, 38 (01)
[10]   Net-generation attributes and seductive properties of the Internet as predictors of online activities and Internet addiction [J].
Leung, L .
CYBERPSYCHOLOGY & BEHAVIOR, 2004, 7 (03) :333-348