Infinite Groups of Finite Period

被引:11
|
作者
Mazurov, V. D. [1 ,2 ]
Ol'shanskii, A. Yu. [3 ]
Sozutov, A. I. [4 ,5 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Vanderbilt Univ, Stevenson Ctr 1326, Nashville, TN 37240 USA
[4] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[5] Reshetnev Siberian State Aerosp Univ, Krasnoyarsk 660037, Russia
关键词
periodic group; periodic product; spectrum of group; recognizability by spectrum; Baire-Suzuki theorem; modular group;
D O I
10.1007/s10469-015-9335-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that there exist periodic groups containing elements of even order and only trivial normal 2-subgroups, in which every pair of involutions generates a 2-group. This gives a negative answer to Question 11.11a in the Kourovka Notebook. Furthermore, we point out examples of finite simple groups that are recognizable by spectrum in the class of finite groups but not recognizable in the class of all groups.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 50 条
  • [31] On the existence of normal complement to the Sylow subgroups of some infinite groups
    Kurdachenko, Leonid A.
    Otal, Javier
    CARPATHIAN JOURNAL OF MATHEMATICS, 2013, 29 (02) : 195 - 200
  • [32] Periodic Groups Saturated with Finite Simple Unitary Groups of Degree 4 over Finite Fields of Odd Characteristic
    Ma, X. J.
    Mao, Y. M.
    Lytkina, D. V.
    Mazurov, V. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (05) : 1165 - 1169
  • [33] On infinite groups with a given strongly isolated 2-subgroup
    A. I. Sozutov
    N. M. Suchkov
    Mathematical Notes, 2000, 68 : 237 - 247
  • [34] On infinite groups with a given strongly isolated 2-subgroup
    Sozutov, AI
    Suchkov, NM
    MATHEMATICAL NOTES, 2000, 68 (1-2) : 237 - 247
  • [35] Polycyclic groups with modular finite homomorphic images
    Musella, C
    ARCHIV DER MATHEMATIK, 2001, 76 (03) : 161 - 165
  • [36] Periodic Groups Saturated with Finite Simple Groups L4(q)
    W. Guo
    D. V. Lytkina
    V. D. Mazurov
    Algebra and Logic, 2022, 60 : 360 - 365
  • [37] Sylow 2-subgroups of the periodic groups saturated with finite simple groups
    Li, B.
    Lytkina, D. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (06) : 1029 - 1033
  • [38] PERIODIC GROUPS SATURATED WITH FINITE SIMPLE GROUPS OF LIE TYPE OF RANK 1
    Shlepkin, A. A.
    ALGEBRA AND LOGIC, 2018, 57 (01) : 81 - 86
  • [39] Periodic Groups Saturated with Finite Simple Groups of Lie Type of Rank 1
    A. A. Shlepkin
    Algebra and Logic, 2018, 57 : 81 - 86
  • [40] 2-RANK TWO PERIODIC GROUPS SATURATED WITH FINITE SIMPLE GROUPS
    Lytkina, Darya Viktorovna
    Sozutov, Anatoly I.
    Shlepkin, Aleksei Anatolievich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 786 - 796