Photochemical treatment of tyrosol, a model phenolic compound present in olive mill wastewater, by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs)

被引:141
作者
Kilic, Melike Yalili [1 ]
Abdelraheem, Wael H. [2 ,3 ]
He, Xuexiang [2 ]
Kestioglu, Kadir [1 ]
Dionysiou, Dionysios D. [2 ]
机构
[1] Bursa Uludag Univ, Fac Engn, Dept Environm Engn, TR-16059 Nilufer, Bursa, Turkey
[2] Univ Cincinnati, Dept Chem & Environm Engn ChEE, Environm Engn & Sci Program, Cincinnati, OH 45221 USA
[3] Sohag Univ, Fac Sci, Chem Dept, Sohag 82524, Egypt
关键词
UV/hydrogen peroxide; UV/persulfate; UV/peroxymonosulfate; Tyrosol; Olive mill wastewater; HYDROGEN-PEROXIDE; AQUEOUS-SOLUTION; RATE CONSTANTS; DEGRADATION; PEROXYMONOSULFATE; REMOVAL; ACID; UV; WASTEWATERS; MECHANISM;
D O I
10.1016/j.jhazmat.2018.06.062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The photochemical degradation and mineralization of tyrosol (TSL), a model phenolic compound present in olive mill wastewater, were studied by UV-254 run irradiated peroxymonosulfate (PMS), hydrogen peroxide (H2O2) and persulfate (PS). Effects of initial TSL concentration, UV fluence, pH, phosphate buffer and presence of inorganic anions (i.e., Cl-, SO42- and NO3-) were also investigated. Sulfate and hydroxyl radicals were demonstrated to be responsible for TSL degradation and mineralization. Regardless of the treatment conditions, pseudo-first-order kinetics could be obtained, with the efficiencies following UV/PS > UV/H2O2 > UV/PMS. The better removal of TSL by UV/PS correlated with the quantum yield and concentration of sulfate radical in the system. Albeit acidic condition slightly enhanced the performance of the AOPs, complete oxidation of TSL was achieved at pH 6.8 by both UV/PS and UV/H2O2. Though, inorganic anions or different concentrations of phosphate buffer did not affect TSL degradation kinetics, presence of inorganic ions decreased significantly the TOC removal for both UV/PMS and UV/H2O2 processes. Meanwhile, UV/PS process was the least influenced by inorganic ions and showed the highest TOC removal of similar to 35%. Overall, UV/PS process was the most effective for TSL degradation and mineralization in the presence or absence of common water constituents.
引用
收藏
页码:734 / 742
页数:9
相关论文
共 51 条
  • [51] Zhou H., 2002, Journal of Environmental Engineering and Science, V1, P247, DOI 10.1139/s02-020