Vortex knots in a Bose-Einstein condensate

被引:78
作者
Proment, Davide [1 ,2 ]
Onorato, Miguel [1 ,2 ]
Barenghi, Carlo F. [3 ]
机构
[1] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy
[2] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[3] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
STABILITY; DYNAMICS; ENERGY;
D O I
10.1103/PhysRevE.85.036306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method for numerically building a vortex knot state in the superfluid wave function of a Bose-Einstein condensate. We integrate in time the governing Gross-Pitaevskii equation to determine evolution and shape preservation of the two (topologically) simplest vortex knots which can be wrapped over a torus. We find that the velocity of a vortex knot depends on the ratio of poloidal and toroidal radius: for smaller ratio, the knot travels faster. Finally, we show how vortex knots break up into vortex rings.
引用
收藏
页数:8
相关论文
共 37 条
[1]  
Adams C. C., 1994, The knot book
[2]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929
[4]   Hidden symmetry and knot solitons in a charged two-condensate Bose system [J].
Babaev, E ;
Faddeev, LD ;
Niemi, AJ .
PHYSICAL REVIEW B, 2002, 65 (10) :1-4
[5]   Dual neutral variables and knot solitons in triplet superconductors [J].
Babaev, E .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4-177002
[6]   Non-Meissner electrodynamics and knotted solitons in two-component superconductors [J].
Babaev, Egor .
PHYSICAL REVIEW B, 2009, 79 (10)
[7]   An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates [J].
Bao, Weizhu ;
Wang, Hanquan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) :612-626
[8]   Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation [J].
Berloff, NG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1617-1632
[9]   Squared eigenfunctions and linear stability properties of closed vortex filaments [J].
Calini, Annalisa ;
Keith, Scott F. ;
Lafortune, Stephane .
NONLINEARITY, 2011, 24 (12) :3555-3583
[10]   Stability of small-amplitude torus knot solutions of the localized induction approximation [J].
Calini, Annalisa ;
Ivey, Thomas .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (33)