AZPharm MetaAlert: A Meta-learning Framework for Pharmacovigilance

被引:1
|
作者
Liu, Xiao [1 ]
Chen, Hsinchun [2 ]
机构
[1] Univ Utah, Dept Operat & Informat Syst, Salt Lake City, UT 84112 USA
[2] Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA
来源
SMART HEALTH, ICSH 2016 | 2017年 / 10219卷
基金
美国国家科学基金会;
关键词
Pharmacovigilance; Adverse drug event; Meta-learning; Deep-learning; Drug safety surveillance; ADVERSE; SIGNALS;
D O I
10.1007/978-3-319-59858-1_14
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pharmacovigilance is the research related to the detection, assessment, understanding, and prevention of adverse drug events. Despite the research efforts in pharmacovigilance in recent year, current approaches are insufficient in detecting adverse drug reaction (ADR) signals timely across different datasets. In this study, we develop an integrated and high-performance AZ Pharm Meta-Alert framework for efficient and accurate post-approval pharmacovigilance. Our approach extracts adverse drug events from patient social media, electronic health records, and FDA's Adverse Event Reporting System (FAERS) and integrates ADR signals with stacking and bagging methods. Experiment results show that our approach achieves 71% in precision, 90% in recall, and 80% in f-measure for ADR signal detection and significantly outperforms the traditional signal detection methods.
引用
收藏
页码:147 / 154
页数:8
相关论文
共 50 条
  • [1] A Meta-learning Framework for Bankruptcy Prediction
    Tsai, Chih-Fong
    Hsu, Yu-Feng
    JOURNAL OF FORECASTING, 2013, 32 (02) : 167 - 179
  • [2] Joint Autoencoders: A Flexible Meta-learning Framework
    Epstein, Baruch
    Meir, Ron
    Michaeli, Tomer
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 494 - 509
  • [3] MetaVG: A Meta-Learning Framework for Visual Grounding
    Su, Chao
    Li, Zhi
    Lei, Tianyi
    Peng, Dezhong
    Wang, Xu
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 236 - 240
  • [4] Cost-sensitive meta-learning framework
    Shilbayeh, Samar Ali
    Vadera, Sunil
    JOURNAL OF MODELLING IN MANAGEMENT, 2021, : 987 - 1007
  • [5] A Unified Meta-Learning Framework for Fair Ranking With Curriculum Learning
    Wang, Yuan
    Tao, Zhiqiang
    Fang, Yi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4386 - 4397
  • [6] A Deep Meta-learning Framework for Heart Disease Prediction
    Salem, Iman
    Fathalla, Radwa
    Kholeif, Mohamed
    2019 IEEE 15TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATICS (INFORMATICS 2019), 2019, : 483 - 490
  • [7] METAFRAUD: A META-LEARNING FRAMEWORK FOR DETECTING FINANCIAL FRAUD
    Abbasi, Ahmed
    Albrecht, Conan
    Vance, Anthony
    Hansen, James
    MIS QUARTERLY, 2012, 36 (04) : 1293 - 1327
  • [8] A survey of deep meta-learning
    Mike Huisman
    Jan N. van Rijn
    Aske Plaat
    Artificial Intelligence Review, 2021, 54 : 4483 - 4541
  • [9] Continual meta-learning algorithm
    Mengjuan Jiang
    Fanzhang Li
    Li Liu
    Applied Intelligence, 2022, 52 : 4527 - 4542
  • [10] Continual meta-learning algorithm
    Jiang, Mengjuan
    Li, Fanzhang
    Liu, Li
    APPLIED INTELLIGENCE, 2022, 52 (04) : 4527 - 4542