A Fourier-Legendre spectral element method in polar coordinates

被引:11
|
作者
Qiu, Zhouhua [1 ]
Zeng, Zhong [1 ,2 ]
Mei, Huan [1 ]
Li, Liang [1 ]
Yao, Liping [1 ]
Zhang, Liangqi [1 ]
机构
[1] Chongqing Univ, Coll Resources & Environm Sci, Dept Engn Mech, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral element method; Polar coordinates; Poisson-type equation; Legendre polynomials; Legendre-Gauss-Radau; Legendre-Gauss-Lobatto; GALERKIN METHODS; POISSON SOLVER; COLLOCATION; EQUATIONS;
D O I
10.1016/j.jcp.2011.10.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a new Fourier-Legendre spectral element method based on the Galerkin formulation is proposed to solve the Poisson-type equations in polar coordinates. The 1/r singularity at r = 0 is avoided by using Gauss-Radau type quadrature points. In order to break the time-step restriction in the time-dependent problems, the clustering of collocation points near the pole is prevented through the technique of domain decomposition in the radial direction. A number of Poisson-type equations subject to the Dirichlet or Neumann boundary condition are computed and compared with the results in literature, which reveals a desirable result. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:666 / 675
页数:10
相关论文
共 50 条
  • [41] On the solution of boundary value problems by the spectral element method
    Ivanov, I. A.
    Yesbayev, A. N.
    Yessenbayeva, G. A.
    Ramazanov, M. I.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2015, 79 (03): : 50 - 54
  • [42] An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation
    Wang, Yazhou
    Qin, Guoliang
    COMPUTERS & FLUIDS, 2018, 174 : 122 - 134
  • [43] Legendre spectral collocation method for approximating the solution of shortest path problems
    Tohidi, Emran
    Samadi, Omid Reza Navid
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 62 - 68
  • [44] A multistep Legendre pseudo-spectral method for Volterra integral equations
    Zhang Xiao-yong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 480 - 494
  • [45] Analytical nodal method for solution of neutron diffusion equation in polar coordinates
    Raj, Manish
    Ahmed, Nadeem
    Singh, Suneet
    ANNALS OF NUCLEAR ENERGY, 2022, 165
  • [46] A Symbolic-Numeric Method for Solving the Poisson Equation in Polar Coordinates
    Vorozhtsov, Evgenii V.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2023, 2023, 14139 : 330 - 349
  • [47] Discontinuous Legendre wavelet element method for elliptic partial differential equations
    Zheng, Xiaoyang
    Yang, Xiaofan
    Su, Hong
    Qiu, Liqiong
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) : 3002 - 3018
  • [48] Discrete Two-Dimensional Fourier Transform in Polar Coordinates Part I: Theory and Operational Rules
    Baddour, Natalie
    MATHEMATICS, 2019, 7 (08)
  • [49] Dispersion analysis of the spectral element method using a triangular mesh
    Liu, Tao
    Sen, Mrinal K.
    Hu, Tianyue
    De Basabe, Jonas D.
    Li, Lin
    WAVE MOTION, 2012, 49 (04) : 474 - 483
  • [50] New spectral element method for Volterra integral equations with kernel
    Zhang, Chao
    Liu, Zhipeng
    Chen, Sheng
    Tao, DongYa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404