On the eigenfunctions of the one-dimensional Schrodinger operator with a polynomial potential

被引:3
|
作者
Mironov, A. E. [1 ,2 ]
Saparbayeva, B. T. [3 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Lab Geometr Methods Math Phys, Moscow 119991, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
ORDINARY DIFFERENTIAL-OPERATORS; EQUATIONS;
D O I
10.1134/S1064562415020179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:171 / 172
页数:2
相关论文
共 50 条
  • [41] FORMATION OF SINGULARITIES IN ONE-DIMENSIONAL THERMOELASTICITY WITH SECOND SOUND
    Hu, Yuxi
    Racke, Reinhard
    QUARTERLY OF APPLIED MATHEMATICS, 2014, 72 (02) : 311 - 321
  • [42] Approximate solutions of one-dimensional systems with fractional derivative
    Ferrari, A.
    Gadella, M.
    Lara, L. P.
    Santillan Marcus, E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (07):
  • [43] Zeroes of the spectral density of the periodic Schrodinger operator with Wigner-von Neumann potential
    Naboko, Serguei
    Simonov, Sergey
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 : 33 - 58
  • [45] Global solutions for a one-dimensional problem in conducting fluids
    Zhang, Jingjun
    Zhu, Junlei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (08) : 1989 - 2006
  • [46] The stationary solution of a one-dimensional bipolar quantum hydrodynamic model
    Hu, Jing
    Li, Yeping
    Liao, Jie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [47] Improving the accuracy of the discrete gradient method in the one-dimensional case
    Cieslinski, Jan L.
    Ratkiewicz, Boguslaw
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [48] ASYMPTOTIC BEHAVIOR OF THE ONE-DIMENSIONAL COMPRESSIBLE MICROPOLAR FLUID MODEL
    Cui, Haibo
    Gao, Junpei
    Yao, Lei
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (02): : 2063 - 2075
  • [49] Multi-symplectic, Lagrangian, one-dimensional gas dynamics
    Webb, G. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (05)
  • [50] Generalized hydrodynamics in the one-dimensional Bose gas: theory and experiments
    Bouchoule, Isabelle
    Dubail, Jerome
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (01):